Files
kernel_xiaomi_sm8250/arch/arm64/Kconfig
Greg Kroah-Hartman 2d76dea417 Merge 4.19.323 into android-4.19-stable
Changes in 4.19.323
	staging: iio: frequency: ad9833: Get frequency value statically
	staging: iio: frequency: ad9833: Load clock using clock framework
	staging: iio: frequency: ad9834: Validate frequency parameter value
	usbnet: ipheth: fix carrier detection in modes 1 and 4
	net: ethernet: use ip_hdrlen() instead of bit shift
	net: phy: vitesse: repair vsc73xx autonegotiation
	scripts: kconfig: merge_config: config files: add a trailing newline
	arm64: dts: rockchip: override BIOS_DISABLE signal via GPIO hog on RK3399 Puma
	net/mlx5: Update the list of the PCI supported devices
	net: ftgmac100: Enable TX interrupt to avoid TX timeout
	net: dpaa: Pad packets to ETH_ZLEN
	soundwire: stream: Revert "soundwire: stream: fix programming slave ports for non-continous port maps"
	selftests/vm: remove call to ksft_set_plan()
	selftests/kcmp: remove call to ksft_set_plan()
	ASoC: allow module autoloading for table db1200_pids
	pinctrl: at91: make it work with current gpiolib
	microblaze: don't treat zero reserved memory regions as error
	net: ftgmac100: Ensure tx descriptor updates are visible
	wifi: iwlwifi: mvm: fix iwl_mvm_max_scan_ie_fw_cmd_room()
	wifi: iwlwifi: mvm: don't wait for tx queues if firmware is dead
	ASoC: tda7419: fix module autoloading
	spi: bcm63xx: Enable module autoloading
	x86/hyperv: Set X86_FEATURE_TSC_KNOWN_FREQ when Hyper-V provides frequency
	ocfs2: add bounds checking to ocfs2_xattr_find_entry()
	ocfs2: strict bound check before memcmp in ocfs2_xattr_find_entry()
	gpio: prevent potential speculation leaks in gpio_device_get_desc()
	USB: serial: pl2303: add device id for Macrosilicon MS3020
	ACPI: PMIC: Remove unneeded check in tps68470_pmic_opregion_probe()
	wifi: ath9k: fix parameter check in ath9k_init_debug()
	wifi: ath9k: Remove error checks when creating debugfs entries
	netfilter: nf_tables: elements with timeout below CONFIG_HZ never expire
	wifi: cfg80211: fix UBSAN noise in cfg80211_wext_siwscan()
	wifi: cfg80211: fix two more possible UBSAN-detected off-by-one errors
	wifi: mac80211: use two-phase skb reclamation in ieee80211_do_stop()
	can: bcm: Clear bo->bcm_proc_read after remove_proc_entry().
	Bluetooth: btusb: Fix not handling ZPL/short-transfer
	block, bfq: fix possible UAF for bfqq->bic with merge chain
	block, bfq: choose the last bfqq from merge chain in bfq_setup_cooperator()
	block, bfq: don't break merge chain in bfq_split_bfqq()
	spi: ppc4xx: handle irq_of_parse_and_map() errors
	spi: ppc4xx: Avoid returning 0 when failed to parse and map IRQ
	ARM: versatile: fix OF node leak in CPUs prepare
	reset: berlin: fix OF node leak in probe() error path
	clocksource/drivers/qcom: Add missing iounmap() on errors in msm_dt_timer_init()
	hwmon: (max16065) Fix overflows seen when writing limits
	mtd: slram: insert break after errors in parsing the map
	hwmon: (ntc_thermistor) fix module autoloading
	power: supply: max17042_battery: Fix SOC threshold calc w/ no current sense
	fbdev: hpfb: Fix an error handling path in hpfb_dio_probe()
	drm/stm: Fix an error handling path in stm_drm_platform_probe()
	drm/amd: fix typo
	drm/amdgpu: Replace one-element array with flexible-array member
	drm/amdgpu: properly handle vbios fake edid sizing
	drm/radeon: Replace one-element array with flexible-array member
	drm/radeon: properly handle vbios fake edid sizing
	drm/rockchip: vop: Allow 4096px width scaling
	drm/radeon/evergreen_cs: fix int overflow errors in cs track offsets
	jfs: fix out-of-bounds in dbNextAG() and diAlloc()
	drm/msm/a5xx: properly clear preemption records on resume
	drm/msm/a5xx: fix races in preemption evaluation stage
	ipmi: docs: don't advertise deprecated sysfs entries
	drm/msm: fix %s null argument error
	xen: use correct end address of kernel for conflict checking
	xen/swiotlb: simplify range_straddles_page_boundary()
	xen/swiotlb: add alignment check for dma buffers
	selftests/bpf: Fix error compiling test_lru_map.c
	xz: cleanup CRC32 edits from 2018
	kthread: add kthread_work tracepoints
	kthread: fix task state in kthread worker if being frozen
	jbd2: introduce/export functions jbd2_journal_submit|finish_inode_data_buffers()
	ext4: clear EXT4_GROUP_INFO_WAS_TRIMMED_BIT even mount with discard
	smackfs: Use rcu_assign_pointer() to ensure safe assignment in smk_set_cipso
	ext4: avoid negative min_clusters in find_group_orlov()
	ext4: return error on ext4_find_inline_entry
	ext4: avoid OOB when system.data xattr changes underneath the filesystem
	nilfs2: fix potential null-ptr-deref in nilfs_btree_insert()
	nilfs2: determine empty node blocks as corrupted
	nilfs2: fix potential oob read in nilfs_btree_check_delete()
	perf sched timehist: Fix missing free of session in perf_sched__timehist()
	perf sched timehist: Fixed timestamp error when unable to confirm event sched_in time
	perf time-utils: Fix 32-bit nsec parsing
	clk: rockchip: Set parent rate for DCLK_VOP clock on RK3228
	drivers: media: dvb-frontends/rtl2832: fix an out-of-bounds write error
	drivers: media: dvb-frontends/rtl2830: fix an out-of-bounds write error
	PCI: xilinx-nwl: Fix register misspelling
	RDMA/iwcm: Fix WARNING:at_kernel/workqueue.c:#check_flush_dependency
	pinctrl: single: fix missing error code in pcs_probe()
	clk: ti: dra7-atl: Fix leak of of_nodes
	pinctrl: mvebu: Fix devinit_dove_pinctrl_probe function
	RDMA/cxgb4: Added NULL check for lookup_atid
	ntb: intel: Fix the NULL vs IS_ERR() bug for debugfs_create_dir()
	nfsd: call cache_put if xdr_reserve_space returns NULL
	f2fs: enhance to update i_mode and acl atomically in f2fs_setattr()
	f2fs: fix typo
	f2fs: fix to update i_ctime in __f2fs_setxattr()
	f2fs: remove unneeded check condition in __f2fs_setxattr()
	f2fs: reduce expensive checkpoint trigger frequency
	coresight: tmc: sg: Do not leak sg_table
	netfilter: nf_reject_ipv6: fix nf_reject_ip6_tcphdr_put()
	net: seeq: Fix use after free vulnerability in ether3 Driver Due to Race Condition
	tcp: introduce tcp_skb_timestamp_us() helper
	tcp: check skb is non-NULL in tcp_rto_delta_us()
	net: qrtr: Update packets cloning when broadcasting
	netfilter: ctnetlink: compile ctnetlink_label_size with CONFIG_NF_CONNTRACK_EVENTS
	crypto: aead,cipher - zeroize key buffer after use
	Remove *.orig pattern from .gitignore
	soc: versatile: integrator: fix OF node leak in probe() error path
	USB: appledisplay: close race between probe and completion handler
	USB: misc: cypress_cy7c63: check for short transfer
	firmware_loader: Block path traversal
	tty: rp2: Fix reset with non forgiving PCIe host bridges
	drbd: Fix atomicity violation in drbd_uuid_set_bm()
	drbd: Add NULL check for net_conf to prevent dereference in state validation
	ACPI: sysfs: validate return type of _STR method
	f2fs: prevent possible int overflow in dir_block_index()
	f2fs: avoid potential int overflow in sanity_check_area_boundary()
	vfs: fix race between evice_inodes() and find_inode()&iput()
	fs: Fix file_set_fowner LSM hook inconsistencies
	nfs: fix memory leak in error path of nfs4_do_reclaim
	PCI: xilinx-nwl: Use irq_data_get_irq_chip_data()
	PCI: xilinx-nwl: Fix off-by-one in INTx IRQ handler
	soc: versatile: realview: fix memory leak during device remove
	soc: versatile: realview: fix soc_dev leak during device remove
	usb: yurex: Replace snprintf() with the safer scnprintf() variant
	USB: misc: yurex: fix race between read and write
	pps: remove usage of the deprecated ida_simple_xx() API
	pps: add an error check in parport_attach
	i2c: aspeed: Update the stop sw state when the bus recovery occurs
	i2c: isch: Add missed 'else'
	usb: yurex: Fix inconsistent locking bug in yurex_read()
	mailbox: rockchip: fix a typo in module autoloading
	mailbox: bcm2835: Fix timeout during suspend mode
	ceph: remove the incorrect Fw reference check when dirtying pages
	netfilter: uapi: NFTA_FLOWTABLE_HOOK is NLA_NESTED
	netfilter: nf_tables: prevent nf_skb_duplicated corruption
	r8152: Factor out OOB link list waits
	net: ethernet: lantiq_etop: fix memory disclosure
	net: avoid potential underflow in qdisc_pkt_len_init() with UFO
	net: add more sanity checks to qdisc_pkt_len_init()
	ipv4: ip_gre: Fix drops of small packets in ipgre_xmit
	sctp: set sk_state back to CLOSED if autobind fails in sctp_listen_start
	ALSA: hda/generic: Unconditionally prefer preferred_dacs pairs
	ALSA: hda/conexant: Fix conflicting quirk for System76 Pangolin
	f2fs: Require FMODE_WRITE for atomic write ioctls
	wifi: ath9k: fix possible integer overflow in ath9k_get_et_stats()
	wifi: ath9k_htc: Use __skb_set_length() for resetting urb before resubmit
	net: hisilicon: hip04: fix OF node leak in probe()
	net: hisilicon: hns_dsaf_mac: fix OF node leak in hns_mac_get_info()
	net: hisilicon: hns_mdio: fix OF node leak in probe()
	ACPICA: Fix memory leak if acpi_ps_get_next_namepath() fails
	ACPICA: Fix memory leak if acpi_ps_get_next_field() fails
	ACPI: EC: Do not release locks during operation region accesses
	ACPICA: check null return of ACPI_ALLOCATE_ZEROED() in acpi_db_convert_to_package()
	tipc: guard against string buffer overrun
	net: mvpp2: Increase size of queue_name buffer
	ipv4: Check !in_dev earlier for ioctl(SIOCSIFADDR).
	ipv4: Mask upper DSCP bits and ECN bits in NETLINK_FIB_LOOKUP family
	tcp: avoid reusing FIN_WAIT2 when trying to find port in connect() process
	ACPICA: iasl: handle empty connection_node
	wifi: mwifiex: Fix memcpy() field-spanning write warning in mwifiex_cmd_802_11_scan_ext()
	signal: Replace BUG_ON()s
	ALSA: asihpi: Fix potential OOB array access
	ALSA: hdsp: Break infinite MIDI input flush loop
	fbdev: pxafb: Fix possible use after free in pxafb_task()
	power: reset: brcmstb: Do not go into infinite loop if reset fails
	ata: sata_sil: Rename sil_blacklist to sil_quirks
	jfs: UBSAN: shift-out-of-bounds in dbFindBits
	jfs: Fix uaf in dbFreeBits
	jfs: check if leafidx greater than num leaves per dmap tree
	jfs: Fix uninit-value access of new_ea in ea_buffer
	drm/amd/display: Check stream before comparing them
	drm/amd/display: Fix index out of bounds in degamma hardware format translation
	drm/printer: Allow NULL data in devcoredump printer
	scsi: aacraid: Rearrange order of struct aac_srb_unit
	drm/radeon/r100: Handle unknown family in r100_cp_init_microcode()
	of/irq: Refer to actual buffer size in of_irq_parse_one()
	ext4: ext4_search_dir should return a proper error
	ext4: fix i_data_sem unlock order in ext4_ind_migrate()
	spi: s3c64xx: fix timeout counters in flush_fifo
	selftests: breakpoints: use remaining time to check if suspend succeed
	selftests: vDSO: fix vDSO symbols lookup for powerpc64
	i2c: xiic: Wait for TX empty to avoid missed TX NAKs
	spi: bcm63xx: Fix module autoloading
	perf/core: Fix small negative period being ignored
	parisc: Fix itlb miss handler for 64-bit programs
	ALSA: core: add isascii() check to card ID generator
	ext4: no need to continue when the number of entries is 1
	ext4: propagate errors from ext4_find_extent() in ext4_insert_range()
	ext4: fix incorrect tid assumption in __jbd2_log_wait_for_space()
	ext4: aovid use-after-free in ext4_ext_insert_extent()
	ext4: fix double brelse() the buffer of the extents path
	ext4: fix incorrect tid assumption in ext4_wait_for_tail_page_commit()
	parisc: Fix 64-bit userspace syscall path
	of/irq: Support #msi-cells=<0> in of_msi_get_domain
	jbd2: stop waiting for space when jbd2_cleanup_journal_tail() returns error
	ocfs2: fix the la space leak when unmounting an ocfs2 volume
	ocfs2: fix uninit-value in ocfs2_get_block()
	ocfs2: reserve space for inline xattr before attaching reflink tree
	ocfs2: cancel dqi_sync_work before freeing oinfo
	ocfs2: remove unreasonable unlock in ocfs2_read_blocks
	ocfs2: fix null-ptr-deref when journal load failed.
	ocfs2: fix possible null-ptr-deref in ocfs2_set_buffer_uptodate
	riscv: define ILLEGAL_POINTER_VALUE for 64bit
	aoe: fix the potential use-after-free problem in more places
	clk: rockchip: fix error for unknown clocks
	media: uapi/linux/cec.h: cec_msg_set_reply_to: zero flags
	media: venus: fix use after free bug in venus_remove due to race condition
	iio: magnetometer: ak8975: Fix reading for ak099xx sensors
	tomoyo: fallback to realpath if symlink's pathname does not exist
	Input: adp5589-keys - fix adp5589_gpio_get_value()
	btrfs: wait for fixup workers before stopping cleaner kthread during umount
	gpio: davinci: fix lazy disable
	ext4: avoid ext4_error()'s caused by ENOMEM in the truncate path
	ext4: fix slab-use-after-free in ext4_split_extent_at()
	ext4: update orig_path in ext4_find_extent()
	arm64: Add Cortex-715 CPU part definition
	arm64: cputype: Add Neoverse-N3 definitions
	arm64: errata: Expand speculative SSBS workaround once more
	uprobes: fix kernel info leak via "[uprobes]" vma
	nfsd: use ktime_get_seconds() for timestamps
	nfsd: fix delegation_blocked() to block correctly for at least 30 seconds
	rtc: at91sam9: drop platform_data support
	rtc: at91sam9: fix OF node leak in probe() error path
	ACPI: battery: Simplify battery hook locking
	ACPI: battery: Fix possible crash when unregistering a battery hook
	ext4: fix inode tree inconsistency caused by ENOMEM
	net: ethernet: cortina: Drop TSO support
	tracing: Remove precision vsnprintf() check from print event
	drm: Move drm_mode_setcrtc() local re-init to failure path
	drm/crtc: fix uninitialized variable use even harder
	virtio_console: fix misc probe bugs
	Input: synaptics-rmi4 - fix UAF of IRQ domain on driver removal
	bpf: Check percpu map value size first
	s390/facility: Disable compile time optimization for decompressor code
	s390/mm: Add cond_resched() to cmm_alloc/free_pages()
	ext4: nested locking for xattr inode
	s390/cpum_sf: Remove WARN_ON_ONCE statements
	ktest.pl: Avoid false positives with grub2 skip regex
	clk: bcm: bcm53573: fix OF node leak in init
	i2c: i801: Use a different adapter-name for IDF adapters
	PCI: Mark Creative Labs EMU20k2 INTx masking as broken
	media: videobuf2-core: clear memory related fields in __vb2_plane_dmabuf_put()
	usb: chipidea: udc: enable suspend interrupt after usb reset
	tools/iio: Add memory allocation failure check for trigger_name
	driver core: bus: Return -EIO instead of 0 when show/store invalid bus attribute
	fbdev: sisfb: Fix strbuf array overflow
	NFS: Remove print_overflow_msg()
	SUNRPC: Fix integer overflow in decode_rc_list()
	tcp: fix tcp_enter_recovery() to zero retrans_stamp when it's safe
	netfilter: br_netfilter: fix panic with metadata_dst skb
	Bluetooth: RFCOMM: FIX possible deadlock in rfcomm_sk_state_change
	gpio: aspeed: Add the flush write to ensure the write complete.
	clk: Add (devm_)clk_get_optional() functions
	clk: generalize devm_clk_get() a bit
	clk: Provide new devm_clk helpers for prepared and enabled clocks
	gpio: aspeed: Use devm_clk api to manage clock source
	igb: Do not bring the device up after non-fatal error
	net: ibm: emac: mal: fix wrong goto
	ppp: fix ppp_async_encode() illegal access
	net: ipv6: ensure we call ipv6_mc_down() at most once
	CDC-NCM: avoid overflow in sanity checking
	HID: plantronics: Workaround for an unexcepted opposite volume key
	Revert "usb: yurex: Replace snprintf() with the safer scnprintf() variant"
	usb: xhci: Fix problem with xhci resume from suspend
	usb: storage: ignore bogus device raised by JieLi BR21 USB sound chip
	net: Fix an unsafe loop on the list
	posix-clock: Fix missing timespec64 check in pc_clock_settime()
	arm64: probes: Remove broken LDR (literal) uprobe support
	arm64: probes: Fix simulate_ldr*_literal()
	PCI: Add function 0 DMA alias quirk for Glenfly Arise chip
	fat: fix uninitialized variable
	KVM: Fix a data race on last_boosted_vcpu in kvm_vcpu_on_spin()
	net: dsa: mv88e6xxx: Fix out-of-bound access
	s390/sclp_vt220: Convert newlines to CRLF instead of LFCR
	KVM: s390: Change virtual to physical address access in diag 0x258 handler
	x86/cpufeatures: Define X86_FEATURE_AMD_IBPB_RET
	drm/vmwgfx: Handle surface check failure correctly
	iio: dac: stm32-dac-core: add missing select REGMAP_MMIO in Kconfig
	iio: adc: ti-ads8688: add missing select IIO_(TRIGGERED_)BUFFER in Kconfig
	iio: hid-sensors: Fix an error handling path in _hid_sensor_set_report_latency()
	iio: light: opt3001: add missing full-scale range value
	Bluetooth: Remove debugfs directory on module init failure
	Bluetooth: btusb: Fix regression with fake CSR controllers 0a12:0001
	xhci: Fix incorrect stream context type macro
	USB: serial: option: add support for Quectel EG916Q-GL
	USB: serial: option: add Telit FN920C04 MBIM compositions
	parport: Proper fix for array out-of-bounds access
	x86/apic: Always explicitly disarm TSC-deadline timer
	nilfs2: propagate directory read errors from nilfs_find_entry()
	clk: Fix pointer casting to prevent oops in devm_clk_release()
	clk: Fix slab-out-of-bounds error in devm_clk_release()
	RDMA/bnxt_re: Fix incorrect AVID type in WQE structure
	RDMA/cxgb4: Fix RDMA_CM_EVENT_UNREACHABLE error for iWARP
	RDMA/bnxt_re: Return more meaningful error
	drm/msm/dsi: fix 32-bit signed integer extension in pclk_rate calculation
	macsec: don't increment counters for an unrelated SA
	net: ethernet: aeroflex: fix potential memory leak in greth_start_xmit_gbit()
	net: systemport: fix potential memory leak in bcm_sysport_xmit()
	usb: typec: altmode should keep reference to parent
	Bluetooth: bnep: fix wild-memory-access in proto_unregister
	arm64:uprobe fix the uprobe SWBP_INSN in big-endian
	arm64: probes: Fix uprobes for big-endian kernels
	KVM: s390: gaccess: Refactor gpa and length calculation
	KVM: s390: gaccess: Refactor access address range check
	KVM: s390: gaccess: Cleanup access to guest pages
	KVM: s390: gaccess: Check if guest address is in memslot
	udf: fix uninit-value use in udf_get_fileshortad
	jfs: Fix sanity check in dbMount
	net/sun3_82586: fix potential memory leak in sun3_82586_send_packet()
	be2net: fix potential memory leak in be_xmit()
	net: usb: usbnet: fix name regression
	posix-clock: posix-clock: Fix unbalanced locking in pc_clock_settime()
	ALSA: hda/realtek: Update default depop procedure
	drm/amd: Guard against bad data for ATIF ACPI method
	ACPI: button: Add DMI quirk for Samsung Galaxy Book2 to fix initial lid detection issue
	nilfs2: fix kernel bug due to missing clearing of buffer delay flag
	hv_netvsc: Fix VF namespace also in synthetic NIC NETDEV_REGISTER event
	selinux: improve error checking in sel_write_load()
	arm64/uprobes: change the uprobe_opcode_t typedef to fix the sparse warning
	xfrm: validate new SA's prefixlen using SA family when sel.family is unset
	usb: dwc3: remove generic PHY calibrate() calls
	usb: dwc3: Add splitdisable quirk for Hisilicon Kirin Soc
	usb: dwc3: core: Stop processing of pending events if controller is halted
	cgroup: Fix potential overflow issue when checking max_depth
	wifi: mac80211: skip non-uploaded keys in ieee80211_iter_keys
	gtp: simplify error handling code in 'gtp_encap_enable()'
	gtp: allow -1 to be specified as file description from userspace
	net/sched: stop qdisc_tree_reduce_backlog on TC_H_ROOT
	bpf: Fix out-of-bounds write in trie_get_next_key()
	net: support ip generic csum processing in skb_csum_hwoffload_help
	net: skip offload for NETIF_F_IPV6_CSUM if ipv6 header contains extension
	netfilter: nft_payload: sanitize offset and length before calling skb_checksum()
	firmware: arm_sdei: Fix the input parameter of cpuhp_remove_state()
	net: amd: mvme147: Fix probe banner message
	misc: sgi-gru: Don't disable preemption in GRU driver
	usbip: tools: Fix detach_port() invalid port error path
	usb: phy: Fix API devm_usb_put_phy() can not release the phy
	xhci: Fix Link TRB DMA in command ring stopped completion event
	Revert "driver core: Fix uevent_show() vs driver detach race"
	wifi: mac80211: do not pass a stopped vif to the driver in .get_txpower
	wifi: ath10k: Fix memory leak in management tx
	wifi: iwlegacy: Clear stale interrupts before resuming device
	nilfs2: fix potential deadlock with newly created symlinks
	ocfs2: pass u64 to ocfs2_truncate_inline maybe overflow
	nilfs2: fix kernel bug due to missing clearing of checked flag
	mm: shmem: fix data-race in shmem_getattr()
	vt: prevent kernel-infoleak in con_font_get()
	Linux 4.19.323

Change-Id: I2348f834187153067ab46b3b48b8fe7da9cee1f1
Signed-off-by: Greg Kroah-Hartman <gregkh@google.com>
2024-11-09 11:24:17 +00:00

1568 lines
49 KiB
Plaintext

config ARM64
def_bool y
select ACPI_CCA_REQUIRED if ACPI
select ACPI_GENERIC_GSI if ACPI
select ACPI_GTDT if ACPI
select ACPI_IORT if ACPI
select ACPI_REDUCED_HARDWARE_ONLY if ACPI
select ACPI_MCFG if ACPI
select ACPI_SPCR_TABLE if ACPI
select ACPI_PPTT if ACPI
select ARCH_CLOCKSOURCE_DATA
select ARCH_HAS_DEBUG_VIRTUAL
select ARCH_HAS_DEVMEM_IS_ALLOWED
select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
select ARCH_HAS_ELF_RANDOMIZE
select ARCH_HAS_FAST_MULTIPLIER
select ARCH_HAS_FORTIFY_SOURCE
select ARCH_HAS_GCOV_PROFILE_ALL
select ARCH_HAS_GIGANTIC_PAGE if (MEMORY_ISOLATION && COMPACTION) || CMA
select ARCH_HAS_KCOV
select ARCH_HAS_MEMBARRIER_SYNC_CORE
select ARCH_HAS_PTE_SPECIAL
select ARCH_HAS_SET_MEMORY
select ARCH_HAS_SG_CHAIN
select ARCH_HAS_STRICT_KERNEL_RWX
select ARCH_HAS_STRICT_MODULE_RWX
select ARCH_HAS_SYSCALL_WRAPPER
select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
select ARCH_HAVE_NMI_SAFE_CMPXCHG
select ARCH_INLINE_READ_LOCK if !PREEMPT
select ARCH_INLINE_READ_LOCK_BH if !PREEMPT
select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPT
select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPT
select ARCH_INLINE_READ_UNLOCK if !PREEMPT
select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPT
select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPT
select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPT
select ARCH_INLINE_WRITE_LOCK if !PREEMPT
select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPT
select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPT
select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPT
select ARCH_INLINE_WRITE_UNLOCK if !PREEMPT
select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPT
select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPT
select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPT
select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPT
select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPT
select ARCH_INLINE_SPIN_LOCK if !PREEMPT
select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPT
select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPT
select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPT
select ARCH_INLINE_SPIN_UNLOCK if !PREEMPT
select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPT
select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPT
select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPT
select ARCH_USE_CMPXCHG_LOCKREF
select ARCH_USE_QUEUED_RWLOCKS
select ARCH_USE_QUEUED_SPINLOCKS
select ARCH_SUPPORTS_MEMORY_FAILURE
select ARCH_SUPPORTS_LTO_CLANG
select ARCH_SUPPORTS_THINLTO
select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK
select ARCH_SUPPORTS_ATOMIC_RMW
select ARCH_SUPPORTS_INT128 if GCC_VERSION >= 50000 || CC_IS_CLANG
select ARCH_SUPPORTS_NUMA_BALANCING
select ARCH_WANT_COMPAT_IPC_PARSE_VERSION
select ARCH_WANT_FRAME_POINTERS
select ARCH_HAS_UBSAN_SANITIZE_ALL
select ARM_AMBA
select ARM_ARCH_TIMER
select ARM_GIC
select AUDIT_ARCH_COMPAT_GENERIC
select ARM_GIC_V2M if PCI
select ARM_GIC_V3
select ARM_GIC_V3_ITS if PCI
select ARM_PSCI_FW
select BUILDTIME_EXTABLE_SORT
select CLONE_BACKWARDS
select COMMON_CLK
select CPU_PM if (SUSPEND || CPU_IDLE)
select DCACHE_WORD_ACCESS
select DMA_DIRECT_OPS
select EDAC_SUPPORT
select FRAME_POINTER
select GENERIC_ALLOCATOR
select GENERIC_ARCH_TOPOLOGY
select GENERIC_CLOCKEVENTS
select GENERIC_CLOCKEVENTS_BROADCAST
select GENERIC_CPU_AUTOPROBE
select GENERIC_CPU_VULNERABILITIES
select GENERIC_EARLY_IOREMAP
select GENERIC_IDLE_POLL_SETUP
select GENERIC_IRQ_MULTI_HANDLER
select GENERIC_IRQ_PROBE
select GENERIC_IRQ_SHOW
select GENERIC_IRQ_SHOW_LEVEL
select GENERIC_PCI_IOMAP
select GENERIC_SCHED_CLOCK
select GENERIC_SMP_IDLE_THREAD
select GENERIC_STRNCPY_FROM_USER
select GENERIC_STRNLEN_USER
select GENERIC_TIME_VSYSCALL
select GENERIC_GETTIMEOFDAY
select HANDLE_DOMAIN_IRQ
select HARDIRQS_SW_RESEND
select HAVE_ACPI_APEI if (ACPI && EFI)
select HAVE_ALIGNED_STRUCT_PAGE if SLUB
select HAVE_ARCH_AUDITSYSCALL
select HAVE_ARCH_BITREVERSE
select HAVE_ARCH_HUGE_VMAP
select HAVE_ARCH_JUMP_LABEL
select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48)
select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN
select HAVE_ARCH_KGDB
select HAVE_ARCH_MMAP_RND_BITS
select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
select HAVE_ARCH_PREL32_RELOCATIONS if !LTO_CLANG
select HAVE_ARCH_SECCOMP_FILTER
select HAVE_ARCH_STACKLEAK
select HAVE_ARCH_THREAD_STRUCT_WHITELIST
select HAVE_ARCH_TRACEHOOK
select HAVE_ARCH_TRANSPARENT_HUGEPAGE
select HAVE_ARCH_VMAP_STACK
select HAVE_ARM_SMCCC
select HAVE_EBPF_JIT
select HAVE_C_RECORDMCOUNT
select HAVE_CMPXCHG_DOUBLE
select HAVE_CMPXCHG_LOCAL
select HAVE_CONTEXT_TRACKING
select HAVE_DEBUG_BUGVERBOSE
select HAVE_DEBUG_KMEMLEAK
select HAVE_DMA_CONTIGUOUS
select HAVE_DYNAMIC_FTRACE
select HAVE_EFFICIENT_UNALIGNED_ACCESS
select HAVE_FTRACE_MCOUNT_RECORD
select HAVE_FUNCTION_TRACER
select HAVE_FUNCTION_GRAPH_TRACER if !SHADOW_CALL_STACK
select HAVE_GCC_PLUGINS
select HAVE_GENERIC_DMA_COHERENT
select HAVE_HW_BREAKPOINT if PERF_EVENTS
select HAVE_IRQ_TIME_ACCOUNTING
select HAVE_KERNEL_GZIP
select HAVE_KERNEL_LZ4
select HAVE_MEMBLOCK
select HAVE_MEMBLOCK_NODE_MAP if NUMA
select HAVE_NMI
select HAVE_PATA_PLATFORM
select HAVE_PERF_EVENTS
select HAVE_PERF_REGS
select HAVE_PERF_USER_STACK_DUMP
select HAVE_REGS_AND_STACK_ACCESS_API
select HAVE_RCU_TABLE_FREE
select HAVE_RSEQ
select HAVE_STACKPROTECTOR
select HAVE_SYSCALL_TRACEPOINTS
select HAVE_KPROBES
select HAVE_KRETPROBES
select HAVE_GENERIC_VDSO
select IOMMU_DMA if IOMMU_SUPPORT
select IRQ_DOMAIN
select IRQ_FORCED_THREADING
select MODULES_USE_ELF_RELA
select MULTI_IRQ_HANDLER
select NEED_DMA_MAP_STATE
select NEED_SG_DMA_LENGTH
select NO_BOOTMEM
select OF
select OF_EARLY_FLATTREE
select OF_RESERVED_MEM
select PCI_ECAM if ACPI
select POWER_RESET
select POWER_SUPPLY
select REFCOUNT_FULL
select SPARSE_IRQ
select SWIOTLB
select SYSCTL_EXCEPTION_TRACE
select THREAD_INFO_IN_TASK
help
ARM 64-bit (AArch64) Linux support.
config 64BIT
def_bool y
config MMU
def_bool y
config ARM64_PAGE_SHIFT
int
default 16 if ARM64_64K_PAGES
default 14 if ARM64_16K_PAGES
default 12
config ARM64_CONT_SHIFT
int
default 5 if ARM64_64K_PAGES
default 7 if ARM64_16K_PAGES
default 4
config ARCH_MMAP_RND_BITS_MIN
default 14 if ARM64_64K_PAGES
default 16 if ARM64_16K_PAGES
default 18
# max bits determined by the following formula:
# VA_BITS - PAGE_SHIFT - 3
config ARCH_MMAP_RND_BITS_MAX
default 19 if ARM64_VA_BITS=36
default 24 if ARM64_VA_BITS=39
default 27 if ARM64_VA_BITS=42
default 30 if ARM64_VA_BITS=47
default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
default 33 if ARM64_VA_BITS=48
default 14 if ARM64_64K_PAGES
default 16 if ARM64_16K_PAGES
default 18
config ARCH_MMAP_RND_COMPAT_BITS_MIN
default 7 if ARM64_64K_PAGES
default 9 if ARM64_16K_PAGES
default 11
config ARCH_MMAP_RND_COMPAT_BITS_MAX
default 16
config NO_IOPORT_MAP
def_bool y if !PCI
config STACKTRACE_SUPPORT
def_bool y
config ILLEGAL_POINTER_VALUE
hex
default 0xdead000000000000
config LOCKDEP_SUPPORT
def_bool y
config TRACE_IRQFLAGS_SUPPORT
def_bool y
config RWSEM_XCHGADD_ALGORITHM
def_bool y
config GENERIC_BUG
def_bool y
depends on BUG
config GENERIC_BUG_RELATIVE_POINTERS
def_bool y
depends on GENERIC_BUG
config GENERIC_HWEIGHT
def_bool y
config GENERIC_CSUM
def_bool y
config GENERIC_CALIBRATE_DELAY
def_bool y
config ZONE_DMA32
bool "Support DMA32 zone" if EXPERT
default y
config HAVE_GENERIC_GUP
def_bool y
config SMP
def_bool y
config KERNEL_MODE_NEON
def_bool y
config FIX_EARLYCON_MEM
def_bool y
config PGTABLE_LEVELS
int
default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
default 3 if ARM64_64K_PAGES && ARM64_VA_BITS_48
default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
config ARCH_SUPPORTS_UPROBES
def_bool y
config ARCH_PROC_KCORE_TEXT
def_bool y
source "arch/arm64/Kconfig.platforms"
menu "Bus support"
config PCI
bool "PCI support"
help
This feature enables support for PCI bus system. If you say Y
here, the kernel will include drivers and infrastructure code
to support PCI bus devices.
config PCI_DOMAINS
def_bool PCI
config PCI_DOMAINS_GENERIC
def_bool PCI
config PCI_SYSCALL
def_bool PCI
source "drivers/pci/Kconfig"
endmenu
menu "Kernel Features"
menu "ARM errata workarounds via the alternatives framework"
config ARM64_ERRATUM_826319
bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
default y
help
This option adds an alternative code sequence to work around ARM
erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
AXI master interface and an L2 cache.
If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
and is unable to accept a certain write via this interface, it will
not progress on read data presented on the read data channel and the
system can deadlock.
The workaround promotes data cache clean instructions to
data cache clean-and-invalidate.
Please note that this does not necessarily enable the workaround,
as it depends on the alternative framework, which will only patch
the kernel if an affected CPU is detected.
If unsure, say Y.
config ARM64_ERRATUM_827319
bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
default y
help
This option adds an alternative code sequence to work around ARM
erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
master interface and an L2 cache.
Under certain conditions this erratum can cause a clean line eviction
to occur at the same time as another transaction to the same address
on the AMBA 5 CHI interface, which can cause data corruption if the
interconnect reorders the two transactions.
The workaround promotes data cache clean instructions to
data cache clean-and-invalidate.
Please note that this does not necessarily enable the workaround,
as it depends on the alternative framework, which will only patch
the kernel if an affected CPU is detected.
If unsure, say Y.
config ARM64_ERRATUM_824069
bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
default y
help
This option adds an alternative code sequence to work around ARM
erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
to a coherent interconnect.
If a Cortex-A53 processor is executing a store or prefetch for
write instruction at the same time as a processor in another
cluster is executing a cache maintenance operation to the same
address, then this erratum might cause a clean cache line to be
incorrectly marked as dirty.
The workaround promotes data cache clean instructions to
data cache clean-and-invalidate.
Please note that this option does not necessarily enable the
workaround, as it depends on the alternative framework, which will
only patch the kernel if an affected CPU is detected.
If unsure, say Y.
config ARM64_ERRATUM_819472
bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
default y
help
This option adds an alternative code sequence to work around ARM
erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
present when it is connected to a coherent interconnect.
If the processor is executing a load and store exclusive sequence at
the same time as a processor in another cluster is executing a cache
maintenance operation to the same address, then this erratum might
cause data corruption.
The workaround promotes data cache clean instructions to
data cache clean-and-invalidate.
Please note that this does not necessarily enable the workaround,
as it depends on the alternative framework, which will only patch
the kernel if an affected CPU is detected.
If unsure, say Y.
config ARM64_ERRATUM_832075
bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
default y
help
This option adds an alternative code sequence to work around ARM
erratum 832075 on Cortex-A57 parts up to r1p2.
Affected Cortex-A57 parts might deadlock when exclusive load/store
instructions to Write-Back memory are mixed with Device loads.
The workaround is to promote device loads to use Load-Acquire
semantics.
Please note that this does not necessarily enable the workaround,
as it depends on the alternative framework, which will only patch
the kernel if an affected CPU is detected.
If unsure, say Y.
config ARM64_ERRATUM_834220
bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault"
depends on KVM
default y
help
This option adds an alternative code sequence to work around ARM
erratum 834220 on Cortex-A57 parts up to r1p2.
Affected Cortex-A57 parts might report a Stage 2 translation
fault as the result of a Stage 1 fault for load crossing a
page boundary when there is a permission or device memory
alignment fault at Stage 1 and a translation fault at Stage 2.
The workaround is to verify that the Stage 1 translation
doesn't generate a fault before handling the Stage 2 fault.
Please note that this does not necessarily enable the workaround,
as it depends on the alternative framework, which will only patch
the kernel if an affected CPU is detected.
If unsure, say Y.
config ARM64_ERRATUM_845719
bool "Cortex-A53: 845719: a load might read incorrect data"
depends on COMPAT
default y
help
This option adds an alternative code sequence to work around ARM
erratum 845719 on Cortex-A53 parts up to r0p4.
When running a compat (AArch32) userspace on an affected Cortex-A53
part, a load at EL0 from a virtual address that matches the bottom 32
bits of the virtual address used by a recent load at (AArch64) EL1
might return incorrect data.
The workaround is to write the contextidr_el1 register on exception
return to a 32-bit task.
Please note that this does not necessarily enable the workaround,
as it depends on the alternative framework, which will only patch
the kernel if an affected CPU is detected.
If unsure, say Y.
config ARM64_ERRATUM_843419
bool "Cortex-A53: 843419: A load or store might access an incorrect address"
default y
select ARM64_MODULE_PLTS if MODULES
help
This option links the kernel with '--fix-cortex-a53-843419' and
enables PLT support to replace certain ADRP instructions, which can
cause subsequent memory accesses to use an incorrect address on
Cortex-A53 parts up to r0p4.
If unsure, say Y.
config ARM64_ERRATUM_1024718
bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
default y
help
This option adds work around for Arm Cortex-A55 Erratum 1024718.
Affected Cortex-A55 cores (all revisions) could cause incorrect
update of the hardware dirty bit when the DBM/AP bits are updated
without a break-before-make. The work around is to disable the usage
of hardware DBM locally on the affected cores. CPUs not affected by
erratum will continue to use the feature.
If unsure, say Y.
config ARM64_ERRATUM_1463225
bool "Cortex-A76: Software Step might prevent interrupt recognition"
default y
help
This option adds a workaround for Arm Cortex-A76 erratum 1463225.
On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
of a system call instruction (SVC) can prevent recognition of
subsequent interrupts when software stepping is disabled in the
exception handler of the system call and either kernel debugging
is enabled or VHE is in use.
Work around the erratum by triggering a dummy step exception
when handling a system call from a task that is being stepped
in a VHE configuration of the kernel.
If unsure, say Y.
config ARM64_ERRATUM_1542419
bool "Neoverse-N1: workaround mis-ordering of instruction fetches"
default y
help
This option adds a workaround for ARM Neoverse-N1 erratum
1542419.
Affected Neoverse-N1 cores could execute a stale instruction when
modified by another CPU. The workaround depends on a firmware
counterpart.
Workaround the issue by hiding the DIC feature from EL0. This
forces user-space to perform cache maintenance.
If unsure, say Y.
config ARM64_ERRATUM_1742098
bool "Cortex-A57/A72: 1742098: ELR recorded incorrectly on interrupt taken between cryptographic instructions in a sequence"
depends on COMPAT
default y
help
This option removes the AES hwcap for aarch32 user-space to
workaround erratum 1742098 on Cortex-A57 and Cortex-A72.
Affected parts may corrupt the AES state if an interrupt is
taken between a pair of AES instructions. These instructions
are only present if the cryptography extensions are present.
All software should have a fallback implementation for CPUs
that don't implement the cryptography extensions.
If unsure, say Y.
config ARM64_ERRATUM_3194386
bool "Cortex-*/Neoverse-*: workaround for MSR SSBS not self-synchronizing"
default y
help
This option adds the workaround for the following errata:
* ARM Cortex-A76 erratum 3324349
* ARM Cortex-A77 erratum 3324348
* ARM Cortex-A78 erratum 3324344
* ARM Cortex-A78C erratum 3324346
* ARM Cortex-A78C erratum 3324347
* ARM Cortex-A710 erratam 3324338
* ARM Cortex-A715 errartum 3456084
* ARM Cortex-A720 erratum 3456091
* ARM Cortex-A725 erratum 3456106
* ARM Cortex-X1 erratum 3324344
* ARM Cortex-X1C erratum 3324346
* ARM Cortex-X2 erratum 3324338
* ARM Cortex-X3 erratum 3324335
* ARM Cortex-X4 erratum 3194386
* ARM Cortex-X925 erratum 3324334
* ARM Neoverse-N1 erratum 3324349
* ARM Neoverse N2 erratum 3324339
* ARM Neoverse-N3 erratum 3456111
* ARM Neoverse-V1 erratum 3324341
* ARM Neoverse V2 erratum 3324336
* ARM Neoverse-V3 erratum 3312417
On affected cores "MSR SSBS, #0" instructions may not affect
subsequent speculative instructions, which may permit unexepected
speculative store bypassing.
Work around this problem by placing a Speculation Barrier (SB) or
Instruction Synchronization Barrier (ISB) after kernel changes to
SSBS. The presence of the SSBS special-purpose register is hidden
from hwcaps and EL0 reads of ID_AA64PFR1_EL1, such that userspace
will use the PR_SPEC_STORE_BYPASS prctl to change SSBS.
If unsure, say Y.
config CAVIUM_ERRATUM_22375
bool "Cavium erratum 22375, 24313"
default y
help
Enable workaround for erratum 22375, 24313.
This implements two gicv3-its errata workarounds for ThunderX. Both
with small impact affecting only ITS table allocation.
erratum 22375: only alloc 8MB table size
erratum 24313: ignore memory access type
The fixes are in ITS initialization and basically ignore memory access
type and table size provided by the TYPER and BASER registers.
If unsure, say Y.
config CAVIUM_ERRATUM_23144
bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
depends on NUMA
default y
help
ITS SYNC command hang for cross node io and collections/cpu mapping.
If unsure, say Y.
config CAVIUM_ERRATUM_23154
bool "Cavium erratum 23154: Access to ICC_IAR1_EL1 is not sync'ed"
default y
help
The gicv3 of ThunderX requires a modified version for
reading the IAR status to ensure data synchronization
(access to icc_iar1_el1 is not sync'ed before and after).
If unsure, say Y.
config CAVIUM_ERRATUM_27456
bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
default y
help
On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
instructions may cause the icache to become corrupted if it
contains data for a non-current ASID. The fix is to
invalidate the icache when changing the mm context.
If unsure, say Y.
config CAVIUM_ERRATUM_30115
bool "Cavium erratum 30115: Guest may disable interrupts in host"
default y
help
On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
1.2, and T83 Pass 1.0, KVM guest execution may disable
interrupts in host. Trapping both GICv3 group-0 and group-1
accesses sidesteps the issue.
If unsure, say Y.
config QCOM_FALKOR_ERRATUM_1003
bool "Falkor E1003: Incorrect translation due to ASID change"
default y
help
On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
in TTBR1_EL1, this situation only occurs in the entry trampoline and
then only for entries in the walk cache, since the leaf translation
is unchanged. Work around the erratum by invalidating the walk cache
entries for the trampoline before entering the kernel proper.
config QCOM_FALKOR_ERRATUM_1009
bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
default y
help
On Falkor v1, the CPU may prematurely complete a DSB following a
TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
one more time to fix the issue.
If unsure, say Y.
config QCOM_QDF2400_ERRATUM_0065
bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
default y
help
On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
been indicated as 16Bytes (0xf), not 8Bytes (0x7).
If unsure, say Y.
config SOCIONEXT_SYNQUACER_PREITS
bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
default y
help
Socionext Synquacer SoCs implement a separate h/w block to generate
MSI doorbell writes with non-zero values for the device ID.
If unsure, say Y.
config HISILICON_ERRATUM_161600802
bool "Hip07 161600802: Erroneous redistributor VLPI base"
default y
help
The HiSilicon Hip07 SoC usees the wrong redistributor base
when issued ITS commands such as VMOVP and VMAPP, and requires
a 128kB offset to be applied to the target address in this commands.
If unsure, say Y.
config QCOM_FALKOR_ERRATUM_E1041
bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
default y
help
Falkor CPU may speculatively fetch instructions from an improper
memory location when MMU translation is changed from SCTLR_ELn[M]=1
to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
If unsure, say Y.
endmenu
choice
prompt "Page size"
default ARM64_4K_PAGES
help
Page size (translation granule) configuration.
config ARM64_4K_PAGES
bool "4KB"
help
This feature enables 4KB pages support.
config ARM64_16K_PAGES
bool "16KB"
help
The system will use 16KB pages support. AArch32 emulation
requires applications compiled with 16K (or a multiple of 16K)
aligned segments.
config ARM64_64K_PAGES
bool "64KB"
help
This feature enables 64KB pages support (4KB by default)
allowing only two levels of page tables and faster TLB
look-up. AArch32 emulation requires applications compiled
with 64K aligned segments.
endchoice
choice
prompt "Virtual address space size"
default ARM64_VA_BITS_39 if ARM64_4K_PAGES
default ARM64_VA_BITS_47 if ARM64_16K_PAGES
default ARM64_VA_BITS_42 if ARM64_64K_PAGES
help
Allows choosing one of multiple possible virtual address
space sizes. The level of translation table is determined by
a combination of page size and virtual address space size.
config ARM64_VA_BITS_36
bool "36-bit" if EXPERT
depends on ARM64_16K_PAGES
config ARM64_VA_BITS_39
bool "39-bit"
depends on ARM64_4K_PAGES
config ARM64_VA_BITS_42
bool "42-bit"
depends on ARM64_64K_PAGES
config ARM64_VA_BITS_47
bool "47-bit"
depends on ARM64_16K_PAGES
config ARM64_VA_BITS_48
bool "48-bit"
endchoice
config ARM64_VA_BITS
int
default 36 if ARM64_VA_BITS_36
default 39 if ARM64_VA_BITS_39
default 42 if ARM64_VA_BITS_42
default 47 if ARM64_VA_BITS_47
default 48 if ARM64_VA_BITS_48
choice
prompt "Physical address space size"
default ARM64_PA_BITS_48
help
Choose the maximum physical address range that the kernel will
support.
config ARM64_PA_BITS_48
bool "48-bit"
config ARM64_PA_BITS_52
bool "52-bit (ARMv8.2)"
depends on ARM64_64K_PAGES
depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
help
Enable support for a 52-bit physical address space, introduced as
part of the ARMv8.2-LPA extension.
With this enabled, the kernel will also continue to work on CPUs that
do not support ARMv8.2-LPA, but with some added memory overhead (and
minor performance overhead).
endchoice
config ARM64_PA_BITS
int
default 48 if ARM64_PA_BITS_48
default 52 if ARM64_PA_BITS_52
config CPU_BIG_ENDIAN
bool "Build big-endian kernel"
help
Say Y if you plan on running a kernel in big-endian mode.
config SCHED_MC
bool "Multi-core scheduler support"
help
Multi-core scheduler support improves the CPU scheduler's decision
making when dealing with multi-core CPU chips at a cost of slightly
increased overhead in some places. If unsure say N here.
config SCHED_SMT
bool "SMT scheduler support"
help
Improves the CPU scheduler's decision making when dealing with
MultiThreading at a cost of slightly increased overhead in some
places. If unsure say N here.
config NR_CPUS
int "Maximum number of CPUs (2-4096)"
range 2 4096
# These have to remain sorted largest to smallest
default "64"
config HOTPLUG_CPU
bool "Support for hot-pluggable CPUs"
select GENERIC_IRQ_MIGRATION
help
Say Y here to experiment with turning CPUs off and on. CPUs
can be controlled through /sys/devices/system/cpu.
# The GPIO number here must be sorted by descending number. In case of
# a multiplatform kernel, we just want the highest value required by the
# selected platforms.
config ARCH_NR_GPIO
int "Number of GPIOs in the system"
default 1280 if ARCH_QCOM
default 256
help
Maximum number of GPIOs in the system.
If unsure, leave the default value.
# Common NUMA Features
config NUMA
bool "Numa Memory Allocation and Scheduler Support"
select ACPI_NUMA if ACPI
select OF_NUMA
help
Enable NUMA (Non Uniform Memory Access) support.
The kernel will try to allocate memory used by a CPU on the
local memory of the CPU and add some more
NUMA awareness to the kernel.
config NODES_SHIFT
int "Maximum NUMA Nodes (as a power of 2)"
range 1 10
default "2"
depends on NEED_MULTIPLE_NODES
help
Specify the maximum number of NUMA Nodes available on the target
system. Increases memory reserved to accommodate various tables.
config USE_PERCPU_NUMA_NODE_ID
def_bool y
depends on NUMA
config HAVE_SETUP_PER_CPU_AREA
def_bool y
depends on NUMA
config NEED_PER_CPU_EMBED_FIRST_CHUNK
def_bool y
depends on NUMA
config HOLES_IN_ZONE
def_bool y
source kernel/Kconfig.hz
config ARCH_SUPPORTS_DEBUG_PAGEALLOC
def_bool y
config ARCH_HAS_HOLES_MEMORYMODEL
def_bool y if SPARSEMEM
config ARCH_SPARSEMEM_ENABLE
def_bool y
select SPARSEMEM_VMEMMAP_ENABLE
config ARCH_SPARSEMEM_DEFAULT
def_bool ARCH_SPARSEMEM_ENABLE
config ARCH_SELECT_MEMORY_MODEL
def_bool ARCH_SPARSEMEM_ENABLE
config ARCH_FLATMEM_ENABLE
def_bool !NUMA
config HAVE_ARCH_PFN_VALID
def_bool ARCH_HAS_HOLES_MEMORYMODEL || !SPARSEMEM
config HW_PERF_EVENTS
def_bool y
depends on ARM_PMU
config SYS_SUPPORTS_HUGETLBFS
def_bool y
config ARCH_WANT_HUGE_PMD_SHARE
def_bool y if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
config ARCH_HAS_CACHE_LINE_SIZE
def_bool y
# Supported by clang >= 7.0
config CC_HAVE_SHADOW_CALL_STACK
def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18)
config ARM64_DMA_USE_IOMMU
bool "ARM64 DMA iommu integration"
select ARM_HAS_SG_CHAIN
select NEED_SG_DMA_LENGTH
help
Enable using iommu through the standard dma apis.
dma_alloc_coherent() will allocate scatter-gather memory
which is made virtually contiguous via iommu.
Enable if system contains IOMMU hardware.
if ARM64_DMA_USE_IOMMU
config ARM64_DMA_IOMMU_ALIGNMENT
int "Maximum PAGE_SIZE order of alignment for DMA IOMMU buffers"
range 4 9
default 9
help
DMA mapping framework by default aligns all buffers to the smallest
PAGE_SIZE order which is greater than or equal to the requested buffer
size. This works well for buffers up to a few hundreds kilobytes, but
for larger buffers it just a waste of address space. Drivers which has
relatively small addressing window (like 64Mib) might run out of
virtual space with just a few allocations.
With this parameter you can specify the maximum PAGE_SIZE order for
DMA IOMMU buffers. Larger buffers will be aligned only to this
specified order. The order is expressed as a power of two multiplied
by the PAGE_SIZE.
endif
config SECCOMP
bool "Enable seccomp to safely compute untrusted bytecode"
---help---
This kernel feature is useful for number crunching applications
that may need to compute untrusted bytecode during their
execution. By using pipes or other transports made available to
the process as file descriptors supporting the read/write
syscalls, it's possible to isolate those applications in
their own address space using seccomp. Once seccomp is
enabled via prctl(PR_SET_SECCOMP), it cannot be disabled
and the task is only allowed to execute a few safe syscalls
defined by each seccomp mode.
config PARAVIRT
bool "Enable paravirtualization code"
help
This changes the kernel so it can modify itself when it is run
under a hypervisor, potentially improving performance significantly
over full virtualization.
config PARAVIRT_TIME_ACCOUNTING
bool "Paravirtual steal time accounting"
select PARAVIRT
default n
help
Select this option to enable fine granularity task steal time
accounting. Time spent executing other tasks in parallel with
the current vCPU is discounted from the vCPU power. To account for
that, there can be a small performance impact.
If in doubt, say N here.
config KEXEC
depends on PM_SLEEP_SMP
select KEXEC_CORE
bool "kexec system call"
---help---
kexec is a system call that implements the ability to shutdown your
current kernel, and to start another kernel. It is like a reboot
but it is independent of the system firmware. And like a reboot
you can start any kernel with it, not just Linux.
config CRASH_DUMP
bool "Build kdump crash kernel"
help
Generate crash dump after being started by kexec. This should
be normally only set in special crash dump kernels which are
loaded in the main kernel with kexec-tools into a specially
reserved region and then later executed after a crash by
kdump/kexec.
For more details see Documentation/kdump/kdump.txt
config XEN_DOM0
def_bool y
depends on XEN
config XEN
bool "Xen guest support on ARM64"
depends on ARM64 && OF
select SWIOTLB_XEN
select PARAVIRT
help
Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
config FORCE_MAX_ZONEORDER
int
default "14" if (ARM64_64K_PAGES && TRANSPARENT_HUGEPAGE)
default "12" if (ARM64_16K_PAGES && TRANSPARENT_HUGEPAGE)
default "11"
help
The kernel memory allocator divides physically contiguous memory
blocks into "zones", where each zone is a power of two number of
pages. This option selects the largest power of two that the kernel
keeps in the memory allocator. If you need to allocate very large
blocks of physically contiguous memory, then you may need to
increase this value.
This config option is actually maximum order plus one. For example,
a value of 11 means that the largest free memory block is 2^10 pages.
We make sure that we can allocate upto a HugePage size for each configuration.
Hence we have :
MAX_ORDER = (PMD_SHIFT - PAGE_SHIFT) + 1 => PAGE_SHIFT - 2
However for 4K, we choose a higher default value, 11 as opposed to 10, giving us
4M allocations matching the default size used by generic code.
config UNMAP_KERNEL_AT_EL0
bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT
default y
help
Speculation attacks against some high-performance processors can
be used to bypass MMU permission checks and leak kernel data to
userspace. This can be defended against by unmapping the kernel
when running in userspace, mapping it back in on exception entry
via a trampoline page in the vector table.
If unsure, say Y.
config HARDEN_BRANCH_PREDICTOR
bool "Harden the branch predictor against aliasing attacks" if EXPERT
default y
help
Speculation attacks against some high-performance processors rely on
being able to manipulate the branch predictor for a victim context by
executing aliasing branches in the attacker context. Such attacks
can be partially mitigated against by clearing internal branch
predictor state and limiting the prediction logic in some situations.
This config option will take CPU-specific actions to harden the
branch predictor against aliasing attacks and may rely on specific
instruction sequences or control bits being set by the system
firmware.
If unsure, say Y.
config HARDEN_EL2_VECTORS
bool "Harden EL2 vector mapping against system register leak" if EXPERT
default y
help
Speculation attacks against some high-performance processors can
be used to leak privileged information such as the vector base
register, resulting in a potential defeat of the EL2 layout
randomization.
This config option will map the vectors to a fixed location,
independent of the EL2 code mapping, so that revealing VBAR_EL2
to an attacker does not give away any extra information. This
only gets enabled on affected CPUs.
If unsure, say Y.
config ARM64_SSBD
bool "Speculative Store Bypass Disable" if EXPERT
default y
help
This enables mitigation of the bypassing of previous stores
by speculative loads.
If unsure, say Y.
config MITIGATE_SPECTRE_BRANCH_HISTORY
bool "Mitigate Spectre style attacks against branch history" if EXPERT
default y
help
Speculation attacks against some high-performance processors can
make use of branch history to influence future speculation.
When taking an exception from user-space, a sequence of branches
or a firmware call overwrites the branch history.
config ARM64_TAGGED_ADDR_ABI
bool "Enable the tagged user addresses syscall ABI"
default y
help
When this option is enabled, user applications can opt in to a
relaxed ABI via prctl() allowing tagged addresses to be passed
to system calls as pointer arguments. For details, see
Documentation/arm64/tagged-address-abi.rst.
config COMPAT_VDSO
bool "Enable vDSO for 32-bit applications"
depends on !CPU_BIG_ENDIAN && "$(CROSS_COMPILE_COMPAT)" != ""
select GENERIC_COMPAT_VDSO
default y
help
Place in the process address space of 32-bit applications an
ELF shared object providing fast implementations of gettimeofday
and clock_gettime.
You must have a 32-bit build of glibc 2.22 or later for programs
to seamlessly take advantage of this.
menuconfig ARMV8_DEPRECATED
bool "Emulate deprecated/obsolete ARMv8 instructions"
depends on COMPAT
depends on SYSCTL
help
Legacy software support may require certain instructions
that have been deprecated or obsoleted in the architecture.
Enable this config to enable selective emulation of these
features.
If unsure, say Y
if ARMV8_DEPRECATED
config SWP_EMULATION
bool "Emulate SWP/SWPB instructions"
help
ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
they are always undefined. Say Y here to enable software
emulation of these instructions for userspace using LDXR/STXR.
In some older versions of glibc [<=2.8] SWP is used during futex
trylock() operations with the assumption that the code will not
be preempted. This invalid assumption may be more likely to fail
with SWP emulation enabled, leading to deadlock of the user
application.
NOTE: when accessing uncached shared regions, LDXR/STXR rely
on an external transaction monitoring block called a global
monitor to maintain update atomicity. If your system does not
implement a global monitor, this option can cause programs that
perform SWP operations to uncached memory to deadlock.
If unsure, say Y
config CP15_BARRIER_EMULATION
bool "Emulate CP15 Barrier instructions"
help
The CP15 barrier instructions - CP15ISB, CP15DSB, and
CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
strongly recommended to use the ISB, DSB, and DMB
instructions instead.
Say Y here to enable software emulation of these
instructions for AArch32 userspace code. When this option is
enabled, CP15 barrier usage is traced which can help
identify software that needs updating.
If unsure, say Y
config SETEND_EMULATION
bool "Emulate SETEND instruction"
help
The SETEND instruction alters the data-endianness of the
AArch32 EL0, and is deprecated in ARMv8.
Say Y here to enable software emulation of the instruction
for AArch32 userspace code.
Note: All the cpus on the system must have mixed endian support at EL0
for this feature to be enabled. If a new CPU - which doesn't support mixed
endian - is hotplugged in after this feature has been enabled, there could
be unexpected results in the applications.
If unsure, say Y
endif
config ARM64_SW_TTBR0_PAN
bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
help
Enabling this option prevents the kernel from accessing
user-space memory directly by pointing TTBR0_EL1 to a reserved
zeroed area and reserved ASID. The user access routines
restore the valid TTBR0_EL1 temporarily.
menu "ARMv8.1 architectural features"
config ARM64_HW_AFDBM
bool "Support for hardware updates of the Access and Dirty page flags"
default y
help
The ARMv8.1 architecture extensions introduce support for
hardware updates of the access and dirty information in page
table entries. When enabled in TCR_EL1 (HA and HD bits) on
capable processors, accesses to pages with PTE_AF cleared will
set this bit instead of raising an access flag fault.
Similarly, writes to read-only pages with the DBM bit set will
clear the read-only bit (AP[2]) instead of raising a
permission fault.
Kernels built with this configuration option enabled continue
to work on pre-ARMv8.1 hardware and the performance impact is
minimal. If unsure, say Y.
config ARM64_PAN
bool "Enable support for Privileged Access Never (PAN)"
default y
help
Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
prevents the kernel or hypervisor from accessing user-space (EL0)
memory directly.
Choosing this option will cause any unprotected (not using
copy_to_user et al) memory access to fail with a permission fault.
The feature is detected at runtime, and will remain as a 'nop'
instruction if the cpu does not implement the feature.
config ARM64_LSE_ATOMICS
bool "Atomic instructions"
default y
help
As part of the Large System Extensions, ARMv8.1 introduces new
atomic instructions that are designed specifically to scale in
very large systems.
Say Y here to make use of these instructions for the in-kernel
atomic routines. This incurs a small overhead on CPUs that do
not support these instructions and requires the kernel to be
built with binutils >= 2.25 in order for the new instructions
to be used.
config ARM64_VHE
bool "Enable support for Virtualization Host Extensions (VHE)"
default y
help
Virtualization Host Extensions (VHE) allow the kernel to run
directly at EL2 (instead of EL1) on processors that support
it. This leads to better performance for KVM, as they reduce
the cost of the world switch.
Selecting this option allows the VHE feature to be detected
at runtime, and does not affect processors that do not
implement this feature.
endmenu
menu "ARMv8.2 architectural features"
config ARM64_UAO
bool "Enable support for User Access Override (UAO)"
default y
help
User Access Override (UAO; part of the ARMv8.2 Extensions)
causes the 'unprivileged' variant of the load/store instructions to
be overridden to be privileged.
This option changes get_user() and friends to use the 'unprivileged'
variant of the load/store instructions. This ensures that user-space
really did have access to the supplied memory. When addr_limit is
set to kernel memory the UAO bit will be set, allowing privileged
access to kernel memory.
Choosing this option will cause copy_to_user() et al to use user-space
memory permissions.
The feature is detected at runtime, the kernel will use the
regular load/store instructions if the cpu does not implement the
feature.
config ARM64_PMEM
bool "Enable support for persistent memory"
select ARCH_HAS_PMEM_API
select ARCH_HAS_UACCESS_FLUSHCACHE
help
Say Y to enable support for the persistent memory API based on the
ARMv8.2 DCPoP feature.
The feature is detected at runtime, and the kernel will use DC CVAC
operations if DC CVAP is not supported (following the behaviour of
DC CVAP itself if the system does not define a point of persistence).
config ARM64_RAS_EXTN
bool "Enable support for RAS CPU Extensions"
default y
help
CPUs that support the Reliability, Availability and Serviceability
(RAS) Extensions, part of ARMv8.2 are able to track faults and
errors, classify them and report them to software.
On CPUs with these extensions system software can use additional
barriers to determine if faults are pending and read the
classification from a new set of registers.
Selecting this feature will allow the kernel to use these barriers
and access the new registers if the system supports the extension.
Platform RAS features may additionally depend on firmware support.
endmenu
config ARM64_SVE
bool "ARM Scalable Vector Extension support"
default y
depends on !KVM || ARM64_VHE
help
The Scalable Vector Extension (SVE) is an extension to the AArch64
execution state which complements and extends the SIMD functionality
of the base architecture to support much larger vectors and to enable
additional vectorisation opportunities.
To enable use of this extension on CPUs that implement it, say Y.
Note that for architectural reasons, firmware _must_ implement SVE
support when running on SVE capable hardware. The required support
is present in:
* version 1.5 and later of the ARM Trusted Firmware
* the AArch64 boot wrapper since commit 5e1261e08abf
("bootwrapper: SVE: Enable SVE for EL2 and below").
For other firmware implementations, consult the firmware documentation
or vendor.
If you need the kernel to boot on SVE-capable hardware with broken
firmware, you may need to say N here until you get your firmware
fixed. Otherwise, you may experience firmware panics or lockups when
booting the kernel. If unsure and you are not observing these
symptoms, you should assume that it is safe to say Y.
CPUs that support SVE are architecturally required to support the
Virtualization Host Extensions (VHE), so the kernel makes no
provision for supporting SVE alongside KVM without VHE enabled.
Thus, you will need to enable CONFIG_ARM64_VHE if you want to support
KVM in the same kernel image.
config ARM64_MODULE_PLTS
bool
select HAVE_MOD_ARCH_SPECIFIC
config RELOCATABLE
bool
select ARCH_HAS_RELR
help
This builds the kernel as a Position Independent Executable (PIE),
which retains all relocation metadata required to relocate the
kernel binary at runtime to a different virtual address than the
address it was linked at.
Since AArch64 uses the RELA relocation format, this requires a
relocation pass at runtime even if the kernel is loaded at the
same address it was linked at.
config RANDOMIZE_BASE
bool "Randomize the address of the kernel image"
select ARM64_MODULE_PLTS if MODULES
select RELOCATABLE
help
Randomizes the virtual address at which the kernel image is
loaded, as a security feature that deters exploit attempts
relying on knowledge of the location of kernel internals.
It is the bootloader's job to provide entropy, by passing a
random u64 value in /chosen/kaslr-seed at kernel entry.
When booting via the UEFI stub, it will invoke the firmware's
EFI_RNG_PROTOCOL implementation (if available) to supply entropy
to the kernel proper. In addition, it will randomise the physical
location of the kernel Image as well.
If unsure, say N.
config RANDOMIZE_MODULE_REGION_FULL
bool "Randomize the module region over a 4 GB range"
depends on RANDOMIZE_BASE
default y
help
Randomizes the location of the module region inside a 4 GB window
covering the core kernel. This way, it is less likely for modules
to leak information about the location of core kernel data structures
but it does imply that function calls between modules and the core
kernel will need to be resolved via veneers in the module PLT.
When this option is not set, the module region will be randomized over
a limited range that contains the [_stext, _etext] interval of the
core kernel, so branch relocations are always in range.
endmenu
menu "Boot options"
config ARM64_ACPI_PARKING_PROTOCOL
bool "Enable support for the ARM64 ACPI parking protocol"
depends on ACPI
help
Enable support for the ARM64 ACPI parking protocol. If disabled
the kernel will not allow booting through the ARM64 ACPI parking
protocol even if the corresponding data is present in the ACPI
MADT table.
config CMDLINE
string "Default kernel command string"
default ""
help
Provide a set of default command-line options at build time by
entering them here. As a minimum, you should specify the the
root device (e.g. root=/dev/nfs).
choice
prompt "Kernel command line type" if CMDLINE != ""
default CMDLINE_FROM_BOOTLOADER
config CMDLINE_FROM_BOOTLOADER
bool "Use bootloader kernel arguments if available"
help
Uses the command-line options passed by the boot loader. If
the boot loader doesn't provide any, the default kernel command
string provided in CMDLINE will be used.
config CMDLINE_EXTEND
bool "Extend bootloader kernel arguments"
help
The command-line arguments provided by the boot loader will be
appended to the default kernel command string.
config CMDLINE_FORCE
bool "Always use the default kernel command string"
help
Always use the default kernel command string, even if the boot
loader passes other arguments to the kernel.
This is useful if you cannot or don't want to change the
command-line options your boot loader passes to the kernel.
endchoice
config EFI_STUB
bool
config EFI
bool "UEFI runtime support"
depends on OF && !CPU_BIG_ENDIAN
depends on KERNEL_MODE_NEON
select ARCH_SUPPORTS_ACPI
select LIBFDT
select UCS2_STRING
select EFI_PARAMS_FROM_FDT
select EFI_RUNTIME_WRAPPERS
select EFI_STUB
select EFI_ARMSTUB
default y
help
This option provides support for runtime services provided
by UEFI firmware (such as non-volatile variables, realtime
clock, and platform reset). A UEFI stub is also provided to
allow the kernel to be booted as an EFI application. This
is only useful on systems that have UEFI firmware.
config DMI
bool "Enable support for SMBIOS (DMI) tables"
depends on EFI
default y
help
This enables SMBIOS/DMI feature for systems.
This option is only useful on systems that have UEFI firmware.
However, even with this option, the resultant kernel should
continue to boot on existing non-UEFI platforms.
endmenu
config COMPAT
bool "Kernel support for 32-bit EL0"
depends on ARM64_4K_PAGES || EXPERT
select COMPAT_BINFMT_ELF if BINFMT_ELF
select HAVE_UID16
select OLD_SIGSUSPEND3
select COMPAT_OLD_SIGACTION
help
This option enables support for a 32-bit EL0 running under a 64-bit
kernel at EL1. AArch32-specific components such as system calls,
the user helper functions, VFP support and the ptrace interface are
handled appropriately by the kernel.
If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
that you will only be able to execute AArch32 binaries that were compiled
with page size aligned segments.
If you want to execute 32-bit userspace applications, say Y.
config KUSER_HELPERS
bool "Enable kuser helpers page for 32 bit applications."
depends on COMPAT
default y
help
Warning: disabling this option may break 32-bit user programs.
Provide kuser helpers to compat tasks. The kernel provides
helper code to userspace in read only form at a fixed location
to allow userspace to be independent of the CPU type fitted to
the system. This permits binaries to be run on ARMv4 through
to ARMv8 without modification.
See Documentation/arm/kernel_user_helpers.txt for details.
However, the fixed address nature of these helpers can be used
by ROP (return orientated programming) authors when creating
exploits.
If all of the binaries and libraries which run on your platform
are built specifically for your platform, and make no use of
these helpers, then you can turn this option off to hinder
such exploits. However, in that case, if a binary or library
relying on those helpers is run, it will not function correctly.
Say N here only if you are absolutely certain that you do not
need these helpers; otherwise, the safe option is to say Y.
config SYSVIPC_COMPAT
def_bool y
depends on COMPAT && SYSVIPC
menu "Power management options"
source "kernel/power/Kconfig"
config ARCH_HIBERNATION_POSSIBLE
def_bool y
depends on CPU_PM
config ARCH_HIBERNATION_HEADER
def_bool y
depends on HIBERNATION
config ARCH_SUSPEND_POSSIBLE
def_bool y
endmenu
menu "CPU Power Management"
source "drivers/cpuidle/Kconfig"
source "drivers/cpufreq/Kconfig"
endmenu
source "drivers/firmware/Kconfig"
source "drivers/acpi/Kconfig"
source "arch/arm64/kvm/Kconfig"
if CRYPTO
source "arch/arm64/crypto/Kconfig"
endif