Files
kernel_xiaomi_sm8250/security/selinux/hooks.c
Greg Kroah-Hartman 07ce88e9de Merge 4.19.164 into android-4.19-stable
Changes in 4.19.164
	Kbuild: do not emit debug info for assembly with LLVM_IAS=1
	x86/lib: Change .weak to SYM_FUNC_START_WEAK for arch/x86/lib/mem*_64.S
	spi: bcm2835aux: Fix use-after-free on unbind
	spi: bcm2835aux: Restore err assignment in bcm2835aux_spi_probe
	iwlwifi: pcie: limit memory read spin time
	arm64: dts: rockchip: Assign a fixed index to mmc devices on rk3399 boards.
	iwlwifi: mvm: fix kernel panic in case of assert during CSA
	powerpc: Drop -me200 addition to build flags
	ARC: stack unwinding: don't assume non-current task is sleeping
	scsi: ufs: Make sure clk scaling happens only when HBA is runtime ACTIVE
	irqchip/gic-v3-its: Unconditionally save/restore the ITS state on suspend
	soc: fsl: dpio: Get the cpumask through cpumask_of(cpu)
	platform/x86: thinkpad_acpi: Do not report SW_TABLET_MODE on Yoga 11e
	platform/x86: thinkpad_acpi: Add BAT1 is primary battery quirk for Thinkpad Yoga 11e 4th gen
	platform/x86: acer-wmi: add automatic keyboard background light toggle key as KEY_LIGHTS_TOGGLE
	platform/x86: intel-vbtn: Support for tablet mode on HP Pavilion 13 x360 PC
	Input: cm109 - do not stomp on control URB
	Input: i8042 - add Acer laptops to the i8042 reset list
	pinctrl: amd: remove debounce filter setting in IRQ type setting
	mmc: block: Fixup condition for CMD13 polling for RPMB requests
	kbuild: avoid static_assert for genksyms
	scsi: be2iscsi: Revert "Fix a theoretical leak in beiscsi_create_eqs()"
	x86/mm/mem_encrypt: Fix definition of PMD_FLAGS_DEC_WP
	x86/membarrier: Get rid of a dubious optimization
	x86/apic/vector: Fix ordering in vector assignment
	compiler.h: fix barrier_data() on clang
	PCI: qcom: Add missing reset for ipq806x
	mac80211: mesh: fix mesh_pathtbl_init() error path
	net: stmmac: free tx skb buffer in stmmac_resume()
	tcp: select sane initial rcvq_space.space for big MSS
	tcp: fix cwnd-limited bug for TSO deferral where we send nothing
	net/mlx4_en: Avoid scheduling restart task if it is already running
	lan743x: fix for potential NULL pointer dereference with bare card
	net/mlx4_en: Handle TX error CQE
	net: stmmac: delete the eee_ctrl_timer after napi disabled
	net: stmmac: dwmac-meson8b: fix mask definition of the m250_sel mux
	net: bridge: vlan: fix error return code in __vlan_add()
	ktest.pl: If size of log is too big to email, email error message
	USB: dummy-hcd: Fix uninitialized array use in init()
	USB: add RESET_RESUME quirk for Snapscan 1212
	ALSA: usb-audio: Fix potential out-of-bounds shift
	ALSA: usb-audio: Fix control 'access overflow' errors from chmap
	xhci: Give USB2 ports time to enter U3 in bus suspend
	USB: UAS: introduce a quirk to set no_write_same
	USB: sisusbvga: Make console support depend on BROKEN
	ALSA: pcm: oss: Fix potential out-of-bounds shift
	serial: 8250_omap: Avoid FIFO corruption caused by MDR1 access
	drm/xen-front: Fix misused IS_ERR_OR_NULL checks
	drm: fix drm_dp_mst_port refcount leaks in drm_dp_mst_allocate_vcpi
	arm64: lse: fix LSE atomics with LLVM's integrated assembler
	arm64: lse: Fix LSE atomics with LLVM
	arm64: Change .weak to SYM_FUNC_START_WEAK_PI for arch/arm64/lib/mem*.S
	x86/resctrl: Remove unused struct mbm_state::chunks_bw
	x86/resctrl: Fix incorrect local bandwidth when mba_sc is enabled
	pinctrl: merrifield: Set default bias in case no particular value given
	pinctrl: baytrail: Avoid clearing debounce value when turning it off
	ARM: dts: sun8i: v3s: fix GIC node memory range
	gpio: mvebu: fix potential user-after-free on probe
	scsi: bnx2i: Requires MMU
	xsk: Fix xsk_poll()'s return type
	can: softing: softing_netdev_open(): fix error handling
	clk: renesas: r9a06g032: Drop __packed for portability
	block: factor out requeue handling from dispatch code
	netfilter: x_tables: Switch synchronization to RCU
	gpio: eic-sprd: break loop when getting NULL device resource
	selftests/bpf/test_offload.py: Reset ethtool features after failed setting
	RDMA/cm: Fix an attempt to use non-valid pointer when cleaning timewait
	ixgbe: avoid premature Rx buffer reuse
	drm/tegra: replace idr_init() by idr_init_base()
	kernel/cpu: add arch override for clear_tasks_mm_cpumask() mm handling
	drm/tegra: sor: Disable clocks on error in tegra_sor_init()
	arm64: syscall: exit userspace before unmasking exceptions
	vxlan: Add needed_headroom for lower device
	vxlan: Copy needed_tailroom from lowerdev
	scsi: mpt3sas: Increase IOCInit request timeout to 30s
	dm table: Remove BUG_ON(in_interrupt())
	soc/tegra: fuse: Fix index bug in get_process_id
	USB: serial: option: add interface-number sanity check to flag handling
	USB: gadget: f_acm: add support for SuperSpeed Plus
	USB: gadget: f_midi: setup SuperSpeed Plus descriptors
	usb: gadget: f_fs: Re-use SS descriptors for SuperSpeedPlus
	USB: gadget: f_rndis: fix bitrate for SuperSpeed and above
	usb: chipidea: ci_hdrc_imx: Pass DISABLE_DEVICE_STREAMING flag to imx6ul
	ARM: dts: exynos: fix roles of USB 3.0 ports on Odroid XU
	ARM: dts: exynos: fix USB 3.0 VBUS control and over-current pins on Exynos5410
	ARM: dts: exynos: fix USB 3.0 pins supply being turned off on Odroid XU
	coresight: tmc-etr: Check if page is valid before dma_map_page()
	scsi: megaraid_sas: Check user-provided offsets
	HID: i2c-hid: add Vero K147 to descriptor override
	serial_core: Check for port state when tty is in error state
	Bluetooth: Fix slab-out-of-bounds read in hci_le_direct_adv_report_evt()
	quota: Sanity-check quota file headers on load
	media: msi2500: assign SPI bus number dynamically
	crypto: af_alg - avoid undefined behavior accessing salg_name
	md: fix a warning caused by a race between concurrent md_ioctl()s
	perf cs-etm: Change tuple from traceID-CPU# to traceID-metadata
	perf cs-etm: Move definition of 'traceid_list' global variable from header file
	drm/gma500: fix double free of gma_connector
	drm/tve200: Fix handling of platform_get_irq() error
	soc: renesas: rmobile-sysc: Fix some leaks in rmobile_init_pm_domains()
	soc: mediatek: Check if power domains can be powered on at boot time
	soc: qcom: geni: More properly switch to DMA mode
	RDMA/bnxt_re: Set queue pair state when being queried
	selinux: fix error initialization in inode_doinit_with_dentry()
	ARM: dts: aspeed: s2600wf: Fix VGA memory region location
	RDMA/rxe: Compute PSN windows correctly
	x86/mm/ident_map: Check for errors from ident_pud_init()
	ARM: p2v: fix handling of LPAE translation in BE mode
	x86/apic: Fix x2apic enablement without interrupt remapping
	sched/deadline: Fix sched_dl_global_validate()
	sched: Reenable interrupts in do_sched_yield()
	crypto: talitos - Endianess in current_desc_hdr()
	crypto: talitos - Fix return type of current_desc_hdr()
	crypto: inside-secure - Fix sizeof() mismatch
	powerpc/64: Set up a kernel stack for secondaries before cpu_restore()
	spi: img-spfi: fix reference leak in img_spfi_resume
	drm/msm/dsi_pll_10nm: restore VCO rate during restore_state
	ASoC: pcm: DRAIN support reactivation
	selinux: fix inode_doinit_with_dentry() LABEL_INVALID error handling
	arm64: dts: exynos: Include common syscon restart/poweroff for Exynos7
	arm64: dts: exynos: Correct psci compatible used on Exynos7
	Bluetooth: Fix null pointer dereference in hci_event_packet()
	Bluetooth: hci_h5: fix memory leak in h5_close
	spi: spi-ti-qspi: fix reference leak in ti_qspi_setup
	spi: tegra20-slink: fix reference leak in slink ops of tegra20
	spi: tegra20-sflash: fix reference leak in tegra_sflash_resume
	spi: tegra114: fix reference leak in tegra spi ops
	spi: bcm63xx-hsspi: fix missing clk_disable_unprepare() on error in bcm63xx_hsspi_resume
	mwifiex: fix mwifiex_shutdown_sw() causing sw reset failure
	ASoC: wm8998: Fix PM disable depth imbalance on error
	ASoC: arizona: Fix a wrong free in wm8997_probe
	RDMa/mthca: Work around -Wenum-conversion warning
	MIPS: BCM47XX: fix kconfig dependency bug for BCM47XX_BCMA
	crypto: qat - fix status check in qat_hal_put_rel_rd_xfer()
	staging: greybus: codecs: Fix reference counter leak in error handling
	staging: gasket: interrupt: fix the missed eventfd_ctx_put() in gasket_interrupt.c
	media: tm6000: Fix sizeof() mismatches
	media: mtk-vcodec: add missing put_device() call in mtk_vcodec_release_dec_pm()
	ASoC: meson: fix COMPILE_TEST error
	scsi: core: Fix VPD LUN ID designator priorities
	media: solo6x10: fix missing snd_card_free in error handling case
	video: fbdev: atmel_lcdfb: fix return error code in atmel_lcdfb_of_init()
	drm/omap: dmm_tiler: fix return error code in omap_dmm_probe()
	Input: ads7846 - fix race that causes missing releases
	Input: ads7846 - fix integer overflow on Rt calculation
	Input: ads7846 - fix unaligned access on 7845
	usb/max3421: fix return error code in max3421_probe()
	spi: mxs: fix reference leak in mxs_spi_probe
	powerpc/feature: Fix CPU_FTRS_ALWAYS by removing CPU_FTRS_GENERIC_32
	crypto: crypto4xx - Replace bitwise OR with logical OR in crypto4xx_build_pd
	crypto: omap-aes - Fix PM disable depth imbalance in omap_aes_probe
	spi: fix resource leak for drivers without .remove callback
	soc: ti: knav_qmss: fix reference leak in knav_queue_probe
	soc: ti: Fix reference imbalance in knav_dma_probe
	drivers: soc: ti: knav_qmss_queue: Fix error return code in knav_queue_probe
	Input: omap4-keypad - fix runtime PM error handling
	RDMA/cxgb4: Validate the number of CQEs
	memstick: fix a double-free bug in memstick_check
	ARM: dts: at91: sama5d4_xplained: add pincontrol for USB Host
	ARM: dts: at91: sama5d3_xplained: add pincontrol for USB Host
	orinoco: Move context allocation after processing the skb
	cw1200: fix missing destroy_workqueue() on error in cw1200_init_common
	dmaengine: mv_xor_v2: Fix error return code in mv_xor_v2_probe()
	media: siano: fix memory leak of debugfs members in smsdvb_hotplug
	platform/x86: mlx-platform: Remove PSU EEPROM from default platform configuration
	platform/x86: mlx-platform: Remove PSU EEPROM from MSN274x platform configuration
	samples: bpf: Fix lwt_len_hist reusing previous BPF map
	mips: cdmm: fix use-after-free in mips_cdmm_bus_discover
	media: max2175: fix max2175_set_csm_mode() error code
	slimbus: qcom-ngd-ctrl: Avoid sending power requests without QMI
	HSI: omap_ssi: Don't jump to free ID in ssi_add_controller()
	ARM: dts: Remove non-existent i2c1 from 98dx3236
	arm64: dts: rockchip: Set dr_mode to "host" for OTG on rk3328-roc-cc
	power: supply: axp288_charger: Fix HP Pavilion x2 10 DMI matching
	power: supply: bq24190_charger: fix reference leak
	genirq/irqdomain: Don't try to free an interrupt that has no mapping
	PCI: Bounds-check command-line resource alignment requests
	PCI: Fix overflow in command-line resource alignment requests
	PCI: iproc: Fix out-of-bound array accesses
	arm64: dts: meson: fix spi-max-frequency on Khadas VIM2
	ARM: dts: at91: at91sam9rl: fix ADC triggers
	platform/x86: dell-smbios-base: Fix error return code in dell_smbios_init
	ath10k: Fix the parsing error in service available event
	ath10k: Fix an error handling path
	ath10k: Release some resources in an error handling path
	NFSv4.2: condition READDIR's mask for security label based on LSM state
	SUNRPC: xprt_load_transport() needs to support the netid "rdma6"
	lockd: don't use interval-based rebinding over TCP
	NFS: switch nfsiod to be an UNBOUND workqueue.
	vfio-pci: Use io_remap_pfn_range() for PCI IO memory
	media: saa7146: fix array overflow in vidioc_s_audio()
	clocksource/drivers/cadence_ttc: Fix memory leak in ttc_setup_clockevent()
	ARM: dts: at91: sama5d2: map securam as device
	pinctrl: falcon: add missing put_device() call in pinctrl_falcon_probe()
	arm64: dts: rockchip: Fix UART pull-ups on rk3328
	memstick: r592: Fix error return in r592_probe()
	net/mlx5: Properly convey driver version to firmware
	ASoC: jz4740-i2s: add missed checks for clk_get()
	dm ioctl: fix error return code in target_message
	clocksource/drivers/arm_arch_timer: Correct fault programming of CNTKCTL_EL1.EVNTI
	cpufreq: highbank: Add missing MODULE_DEVICE_TABLE
	cpufreq: mediatek: Add missing MODULE_DEVICE_TABLE
	cpufreq: st: Add missing MODULE_DEVICE_TABLE
	cpufreq: loongson1: Add missing MODULE_ALIAS
	cpufreq: scpi: Add missing MODULE_ALIAS
	scsi: qedi: Fix missing destroy_workqueue() on error in __qedi_probe
	scsi: pm80xx: Fix error return in pm8001_pci_probe()
	seq_buf: Avoid type mismatch for seq_buf_init
	scsi: fnic: Fix error return code in fnic_probe()
	platform/x86: mlx-platform: Fix item counter assignment for MSN2700, MSN24xx systems
	powerpc/pseries/hibernation: drop pseries_suspend_begin() from suspend ops
	powerpc/pseries/hibernation: remove redundant cacheinfo update
	usb: ehci-omap: Fix PM disable depth umbalance in ehci_hcd_omap_probe
	usb: oxu210hp-hcd: Fix memory leak in oxu_create
	speakup: fix uninitialized flush_lock
	nfsd: Fix message level for normal termination
	nfs_common: need lock during iterate through the list
	x86/kprobes: Restore BTF if the single-stepping is cancelled
	bus: fsl-mc: fix error return code in fsl_mc_object_allocate()
	clk: tegra: Fix duplicated SE clock entry
	extcon: max77693: Fix modalias string
	mac80211: don't set set TDLS STA bandwidth wider than possible
	ASoC: wm_adsp: remove "ctl" from list on error in wm_adsp_create_control()
	irqchip/alpine-msi: Fix freeing of interrupts on allocation error path
	watchdog: sirfsoc: Add missing dependency on HAS_IOMEM
	watchdog: sprd: remove watchdog disable from resume fail path
	watchdog: sprd: check busy bit before new loading rather than after that
	watchdog: Fix potential dereferencing of null pointer
	um: Monitor error events in IRQ controller
	um: tty: Fix handling of close in tty lines
	um: chan_xterm: Fix fd leak
	nfc: s3fwrn5: Release the nfc firmware
	powerpc/ps3: use dma_mapping_error()
	checkpatch: fix unescaped left brace
	net: bcmgenet: Fix a resource leak in an error handling path in the probe functin
	net: allwinner: Fix some resources leak in the error handling path of the probe and in the remove function
	net: korina: fix return value
	libnvdimm/label: Return -ENXIO for no slot in __blk_label_update
	watchdog: qcom: Avoid context switch in restart handler
	watchdog: coh901327: add COMMON_CLK dependency
	clk: ti: Fix memleak in ti_fapll_synth_setup
	pwm: zx: Add missing cleanup in error path
	pwm: lp3943: Dynamically allocate PWM chip base
	perf record: Fix memory leak when using '--user-regs=?' to list registers
	qlcnic: Fix error code in probe
	clk: s2mps11: Fix a resource leak in error handling paths in the probe function
	clk: sunxi-ng: Make sure divider tables have sentinel
	kconfig: fix return value of do_error_if()
	ARM: sunxi: Add machine match for the Allwinner V3 SoC
	cfg80211: initialize rekey_data
	fix namespaced fscaps when !CONFIG_SECURITY
	lwt: Disable BH too in run_lwt_bpf()
	Input: cros_ec_keyb - send 'scancodes' in addition to key events
	Input: goodix - add upside-down quirk for Teclast X98 Pro tablet
	media: gspca: Fix memory leak in probe
	media: sunxi-cir: ensure IR is handled when it is continuous
	media: netup_unidvb: Don't leak SPI master in probe error path
	media: ipu3-cio2: Remove traces of returned buffers
	media: ipu3-cio2: Return actual subdev format
	media: ipu3-cio2: Serialise access to pad format
	media: ipu3-cio2: Validate mbus format in setting subdev format
	media: ipu3-cio2: Make the field on subdev format V4L2_FIELD_NONE
	Input: cyapa_gen6 - fix out-of-bounds stack access
	ALSA: hda/ca0132 - Change Input Source enum strings.
	PM: ACPI: PCI: Drop acpi_pm_set_bridge_wakeup()
	Revert "ACPI / resources: Use AE_CTRL_TERMINATE to terminate resources walks"
	ACPI: PNP: compare the string length in the matching_id()
	ALSA: hda: Fix regressions on clear and reconfig sysfs
	ALSA: hda/realtek - Enable headset mic of ASUS X430UN with ALC256
	ALSA: hda/realtek - Enable headset mic of ASUS Q524UQK with ALC255
	ALSA: pcm: oss: Fix a few more UBSAN fixes
	ALSA: hda/realtek: Add quirk for MSI-GP73
	ALSA: hda/realtek: Apply jack fixup for Quanta NL3
	ALSA: usb-audio: Add VID to support native DSD reproduction on FiiO devices
	ALSA: usb-audio: Disable sample read check if firmware doesn't give back
	s390/smp: perform initial CPU reset also for SMT siblings
	s390/kexec_file: fix diag308 subcode when loading crash kernel
	s390/dasd: fix hanging device offline processing
	s390/dasd: prevent inconsistent LCU device data
	s390/dasd: fix list corruption of pavgroup group list
	s390/dasd: fix list corruption of lcu list
	staging: comedi: mf6x4: Fix AI end-of-conversion detection
	powerpc/perf: Exclude kernel samples while counting events in user space.
	crypto: ecdh - avoid unaligned accesses in ecdh_set_secret()
	EDAC/amd64: Fix PCI component registration
	USB: serial: mos7720: fix parallel-port state restore
	USB: serial: digi_acceleport: fix write-wakeup deadlocks
	USB: serial: keyspan_pda: fix dropped unthrottle interrupts
	USB: serial: keyspan_pda: fix write deadlock
	USB: serial: keyspan_pda: fix stalled writes
	USB: serial: keyspan_pda: fix write-wakeup use-after-free
	USB: serial: keyspan_pda: fix tx-unthrottle use-after-free
	USB: serial: keyspan_pda: fix write unthrottling
	ext4: fix a memory leak of ext4_free_data
	ext4: fix deadlock with fs freezing and EA inodes
	KVM: arm64: Introduce handling of AArch32 TTBCR2 traps
	ARM: dts: pandaboard: fix pinmux for gpio user button of Pandaboard ES
	ARM: dts: at91: sama5d2: fix CAN message ram offset and size
	powerpc: Fix incorrect stw{, ux, u, x} instructions in __set_pte_at
	powerpc/rtas: Fix typo of ibm,open-errinjct in RTAS filter
	powerpc/xmon: Change printk() to pr_cont()
	powerpc/powernv/memtrace: Don't leak kernel memory to user space
	powerpc/powernv/memtrace: Fix crashing the kernel when enabling concurrently
	ima: Don't modify file descriptor mode on the fly
	ceph: fix race in concurrent __ceph_remove_cap invocations
	SMB3: avoid confusing warning message on mount to Azure
	SMB3.1.1: do not log warning message if server doesn't populate salt
	ubifs: wbuf: Don't leak kernel memory to flash
	jffs2: Fix GC exit abnormally
	jfs: Fix array index bounds check in dbAdjTree
	drm/dp_aux_dev: check aux_dev before use in drm_dp_aux_dev_get_by_minor()
	spi: spi-sh: Fix use-after-free on unbind
	spi: davinci: Fix use-after-free on unbind
	spi: pic32: Don't leak DMA channels in probe error path
	spi: rb4xx: Don't leak SPI master in probe error path
	spi: sc18is602: Don't leak SPI master in probe error path
	spi: st-ssc4: Fix unbalanced pm_runtime_disable() in probe error path
	spi: mt7621: fix missing clk_disable_unprepare() on error in mt7621_spi_probe
	soc: qcom: smp2p: Safely acquire spinlock without IRQs
	mtd: spinand: Fix OOB read
	mtd: parser: cmdline: Fix parsing of part-names with colons
	mtd: rawnand: qcom: Fix DMA sync on FLASH_STATUS register read
	scsi: lpfc: Fix invalid sleeping context in lpfc_sli4_nvmet_alloc()
	scsi: lpfc: Re-fix use after free in lpfc_rq_buf_free()
	iio: buffer: Fix demux update
	iio: adc: rockchip_saradc: fix missing clk_disable_unprepare() on error in rockchip_saradc_resume
	iio:light:rpr0521: Fix timestamp alignment and prevent data leak.
	iio:light:st_uvis25: Fix timestamp alignment and prevent data leak.
	iio:pressure:mpl3115: Force alignment of buffer
	iio:imu:bmi160: Fix too large a buffer.
	md/cluster: block reshape with remote resync job
	md/cluster: fix deadlock when node is doing resync job
	pinctrl: sunxi: Always call chained_irq_{enter, exit} in sunxi_pinctrl_irq_handler
	clk: mvebu: a3700: fix the XTAL MODE pin to MPP1_9
	xen-blkback: set ring->xenblkd to NULL after kthread_stop()
	xen/xenbus: Allow watches discard events before queueing
	xen/xenbus: Add 'will_handle' callback support in xenbus_watch_path()
	xen/xenbus/xen_bus_type: Support will_handle watch callback
	xen/xenbus: Count pending messages for each watch
	xenbus/xenbus_backend: Disallow pending watch messages
	libnvdimm/namespace: Fix reaping of invalidated block-window-namespace labels
	platform/x86: intel-vbtn: Allow switch events on Acer Switch Alpha 12
	PCI: Fix pci_slot_release() NULL pointer dereference
	platform/x86: mlx-platform: remove an unused variable
	Linux 4.19.164

Signed-off-by: Greg Kroah-Hartman <gregkh@google.com>
Change-Id: I8e2d24b45393ee2360186893d4e578e20156c7f1
2020-12-30 12:19:31 +01:00

7494 lines
188 KiB
C

/*
* NSA Security-Enhanced Linux (SELinux) security module
*
* This file contains the SELinux hook function implementations.
*
* Authors: Stephen Smalley, <sds@tycho.nsa.gov>
* Chris Vance, <cvance@nai.com>
* Wayne Salamon, <wsalamon@nai.com>
* James Morris <jmorris@redhat.com>
*
* Copyright (C) 2001,2002 Networks Associates Technology, Inc.
* Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
* Eric Paris <eparis@redhat.com>
* Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
* <dgoeddel@trustedcs.com>
* Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
* Paul Moore <paul@paul-moore.com>
* Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
* Yuichi Nakamura <ynakam@hitachisoft.jp>
* Copyright (C) 2016 Mellanox Technologies
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2,
* as published by the Free Software Foundation.
*/
#include <linux/init.h>
#include <linux/kd.h>
#include <linux/kernel.h>
#include <linux/tracehook.h>
#include <linux/errno.h>
#include <linux/sched/signal.h>
#include <linux/sched/task.h>
#include <linux/lsm_hooks.h>
#include <linux/xattr.h>
#include <linux/capability.h>
#include <linux/unistd.h>
#include <linux/mm.h>
#include <linux/mman.h>
#include <linux/slab.h>
#include <linux/pagemap.h>
#include <linux/proc_fs.h>
#include <linux/swap.h>
#include <linux/spinlock.h>
#include <linux/syscalls.h>
#include <linux/dcache.h>
#include <linux/file.h>
#include <linux/fdtable.h>
#include <linux/namei.h>
#include <linux/mount.h>
#include <linux/netfilter_ipv4.h>
#include <linux/netfilter_ipv6.h>
#include <linux/tty.h>
#include <net/icmp.h>
#include <net/ip.h> /* for local_port_range[] */
#include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
#include <net/inet_connection_sock.h>
#include <net/net_namespace.h>
#include <net/netlabel.h>
#include <linux/uaccess.h>
#include <asm/ioctls.h>
#include <linux/atomic.h>
#include <linux/bitops.h>
#include <linux/interrupt.h>
#include <linux/netdevice.h> /* for network interface checks */
#include <net/netlink.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/dccp.h>
#include <linux/sctp.h>
#include <net/sctp/structs.h>
#include <linux/quota.h>
#include <linux/un.h> /* for Unix socket types */
#include <net/af_unix.h> /* for Unix socket types */
#include <linux/parser.h>
#include <linux/nfs_mount.h>
#include <net/ipv6.h>
#include <linux/hugetlb.h>
#include <linux/personality.h>
#include <linux/audit.h>
#include <linux/string.h>
#include <linux/selinux.h>
#include <linux/mutex.h>
#include <linux/posix-timers.h>
#include <linux/syslog.h>
#include <linux/user_namespace.h>
#include <linux/export.h>
#include <linux/msg.h>
#include <linux/shm.h>
#include <linux/bpf.h>
#include "avc.h"
#include "objsec.h"
#include "netif.h"
#include "netnode.h"
#include "netport.h"
#include "ibpkey.h"
#include "xfrm.h"
#include "netlabel.h"
#include "audit.h"
#include "avc_ss.h"
struct selinux_state selinux_state;
/* SECMARK reference count */
static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
static int selinux_enforcing_boot;
static int __init enforcing_setup(char *str)
{
unsigned long enforcing;
if (!kstrtoul(str, 0, &enforcing))
selinux_enforcing_boot = enforcing ? 1 : 0;
return 1;
}
__setup("enforcing=", enforcing_setup);
#else
#define selinux_enforcing_boot 1
#endif
#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
static int __init selinux_enabled_setup(char *str)
{
unsigned long enabled;
if (!kstrtoul(str, 0, &enabled))
selinux_enabled = enabled ? 1 : 0;
return 1;
}
__setup("selinux=", selinux_enabled_setup);
#else
int selinux_enabled = 1;
#endif
static unsigned int selinux_checkreqprot_boot =
CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE;
static int __init checkreqprot_setup(char *str)
{
unsigned long checkreqprot;
if (!kstrtoul(str, 0, &checkreqprot))
selinux_checkreqprot_boot = checkreqprot ? 1 : 0;
return 1;
}
__setup("checkreqprot=", checkreqprot_setup);
static struct kmem_cache *sel_inode_cache;
static struct kmem_cache *file_security_cache;
/**
* selinux_secmark_enabled - Check to see if SECMARK is currently enabled
*
* Description:
* This function checks the SECMARK reference counter to see if any SECMARK
* targets are currently configured, if the reference counter is greater than
* zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
* enabled, false (0) if SECMARK is disabled. If the always_check_network
* policy capability is enabled, SECMARK is always considered enabled.
*
*/
static int selinux_secmark_enabled(void)
{
return (selinux_policycap_alwaysnetwork() ||
atomic_read(&selinux_secmark_refcount));
}
/**
* selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
*
* Description:
* This function checks if NetLabel or labeled IPSEC is enabled. Returns true
* (1) if any are enabled or false (0) if neither are enabled. If the
* always_check_network policy capability is enabled, peer labeling
* is always considered enabled.
*
*/
static int selinux_peerlbl_enabled(void)
{
return (selinux_policycap_alwaysnetwork() ||
netlbl_enabled() || selinux_xfrm_enabled());
}
static int selinux_netcache_avc_callback(u32 event)
{
if (event == AVC_CALLBACK_RESET) {
sel_netif_flush();
sel_netnode_flush();
sel_netport_flush();
synchronize_net();
}
return 0;
}
static int selinux_lsm_notifier_avc_callback(u32 event)
{
if (event == AVC_CALLBACK_RESET) {
sel_ib_pkey_flush();
call_lsm_notifier(LSM_POLICY_CHANGE, NULL);
}
return 0;
}
/*
* initialise the security for the init task
*/
static void cred_init_security(void)
{
struct cred *cred = (struct cred *) current->real_cred;
struct task_security_struct *tsec;
tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
if (!tsec)
panic("SELinux: Failed to initialize initial task.\n");
tsec->osid = tsec->sid = SECINITSID_KERNEL;
cred->security = tsec;
}
/*
* get the security ID of a set of credentials
*/
static inline u32 cred_sid(const struct cred *cred)
{
const struct task_security_struct *tsec;
tsec = cred->security;
return tsec->sid;
}
/*
* get the objective security ID of a task
*/
static inline u32 task_sid(const struct task_struct *task)
{
u32 sid;
rcu_read_lock();
sid = cred_sid(__task_cred(task));
rcu_read_unlock();
return sid;
}
/* Allocate and free functions for each kind of security blob. */
static int inode_alloc_security(struct inode *inode)
{
struct inode_security_struct *isec;
u32 sid = current_sid();
isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
if (!isec)
return -ENOMEM;
spin_lock_init(&isec->lock);
INIT_LIST_HEAD(&isec->list);
isec->inode = inode;
isec->sid = SECINITSID_UNLABELED;
isec->sclass = SECCLASS_FILE;
isec->task_sid = sid;
isec->initialized = LABEL_INVALID;
inode->i_security = isec;
return 0;
}
static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
/*
* Try reloading inode security labels that have been marked as invalid. The
* @may_sleep parameter indicates when sleeping and thus reloading labels is
* allowed; when set to false, returns -ECHILD when the label is
* invalid. The @dentry parameter should be set to a dentry of the inode.
*/
static int __inode_security_revalidate(struct inode *inode,
struct dentry *dentry,
bool may_sleep)
{
struct inode_security_struct *isec = inode->i_security;
might_sleep_if(may_sleep);
if (selinux_state.initialized &&
isec->initialized != LABEL_INITIALIZED) {
if (!may_sleep)
return -ECHILD;
/*
* Try reloading the inode security label. This will fail if
* @opt_dentry is NULL and no dentry for this inode can be
* found; in that case, continue using the old label.
*/
inode_doinit_with_dentry(inode, dentry);
}
return 0;
}
static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
{
return inode->i_security;
}
static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
{
int error;
error = __inode_security_revalidate(inode, NULL, !rcu);
if (error)
return ERR_PTR(error);
return inode->i_security;
}
/*
* Get the security label of an inode.
*/
static struct inode_security_struct *inode_security(struct inode *inode)
{
__inode_security_revalidate(inode, NULL, true);
return inode->i_security;
}
static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
{
struct inode *inode = d_backing_inode(dentry);
return inode->i_security;
}
/*
* Get the security label of a dentry's backing inode.
*/
static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
{
struct inode *inode = d_backing_inode(dentry);
__inode_security_revalidate(inode, dentry, true);
return inode->i_security;
}
static void inode_free_rcu(struct rcu_head *head)
{
struct inode_security_struct *isec;
isec = container_of(head, struct inode_security_struct, rcu);
kmem_cache_free(sel_inode_cache, isec);
}
static void inode_free_security(struct inode *inode)
{
struct inode_security_struct *isec = inode->i_security;
struct superblock_security_struct *sbsec = inode->i_sb->s_security;
/*
* As not all inode security structures are in a list, we check for
* empty list outside of the lock to make sure that we won't waste
* time taking a lock doing nothing.
*
* The list_del_init() function can be safely called more than once.
* It should not be possible for this function to be called with
* concurrent list_add(), but for better safety against future changes
* in the code, we use list_empty_careful() here.
*/
if (!list_empty_careful(&isec->list)) {
spin_lock(&sbsec->isec_lock);
list_del_init(&isec->list);
spin_unlock(&sbsec->isec_lock);
}
/*
* The inode may still be referenced in a path walk and
* a call to selinux_inode_permission() can be made
* after inode_free_security() is called. Ideally, the VFS
* wouldn't do this, but fixing that is a much harder
* job. For now, simply free the i_security via RCU, and
* leave the current inode->i_security pointer intact.
* The inode will be freed after the RCU grace period too.
*/
call_rcu(&isec->rcu, inode_free_rcu);
}
static int file_alloc_security(struct file *file)
{
struct file_security_struct *fsec;
u32 sid = current_sid();
fsec = kmem_cache_zalloc(file_security_cache, GFP_KERNEL);
if (!fsec)
return -ENOMEM;
fsec->sid = sid;
fsec->fown_sid = sid;
file->f_security = fsec;
return 0;
}
static void file_free_security(struct file *file)
{
struct file_security_struct *fsec = file->f_security;
file->f_security = NULL;
kmem_cache_free(file_security_cache, fsec);
}
static int superblock_alloc_security(struct super_block *sb)
{
struct superblock_security_struct *sbsec;
sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
if (!sbsec)
return -ENOMEM;
mutex_init(&sbsec->lock);
INIT_LIST_HEAD(&sbsec->isec_head);
spin_lock_init(&sbsec->isec_lock);
sbsec->sb = sb;
sbsec->sid = SECINITSID_UNLABELED;
sbsec->def_sid = SECINITSID_FILE;
sbsec->mntpoint_sid = SECINITSID_UNLABELED;
sb->s_security = sbsec;
return 0;
}
static void superblock_free_security(struct super_block *sb)
{
struct superblock_security_struct *sbsec = sb->s_security;
sb->s_security = NULL;
kfree(sbsec);
}
static inline int inode_doinit(struct inode *inode)
{
return inode_doinit_with_dentry(inode, NULL);
}
enum {
Opt_error = -1,
Opt_context = 1,
Opt_fscontext = 2,
Opt_defcontext = 3,
Opt_rootcontext = 4,
Opt_labelsupport = 5,
Opt_nextmntopt = 6,
};
#define NUM_SEL_MNT_OPTS (Opt_nextmntopt - 1)
static const match_table_t tokens = {
{Opt_context, CONTEXT_STR "%s"},
{Opt_fscontext, FSCONTEXT_STR "%s"},
{Opt_defcontext, DEFCONTEXT_STR "%s"},
{Opt_rootcontext, ROOTCONTEXT_STR "%s"},
{Opt_labelsupport, LABELSUPP_STR},
{Opt_error, NULL},
};
#define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
static int may_context_mount_sb_relabel(u32 sid,
struct superblock_security_struct *sbsec,
const struct cred *cred)
{
const struct task_security_struct *tsec = cred->security;
int rc;
rc = avc_has_perm(&selinux_state,
tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
FILESYSTEM__RELABELFROM, NULL);
if (rc)
return rc;
rc = avc_has_perm(&selinux_state,
tsec->sid, sid, SECCLASS_FILESYSTEM,
FILESYSTEM__RELABELTO, NULL);
return rc;
}
static int may_context_mount_inode_relabel(u32 sid,
struct superblock_security_struct *sbsec,
const struct cred *cred)
{
const struct task_security_struct *tsec = cred->security;
int rc;
rc = avc_has_perm(&selinux_state,
tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
FILESYSTEM__RELABELFROM, NULL);
if (rc)
return rc;
rc = avc_has_perm(&selinux_state,
sid, sbsec->sid, SECCLASS_FILESYSTEM,
FILESYSTEM__ASSOCIATE, NULL);
return rc;
}
static int selinux_is_genfs_special_handling(struct super_block *sb)
{
/* Special handling. Genfs but also in-core setxattr handler */
return !strcmp(sb->s_type->name, "sysfs") ||
!strcmp(sb->s_type->name, "pstore") ||
!strcmp(sb->s_type->name, "debugfs") ||
!strcmp(sb->s_type->name, "tracefs") ||
!strcmp(sb->s_type->name, "rootfs") ||
(selinux_policycap_cgroupseclabel() &&
(!strcmp(sb->s_type->name, "cgroup") ||
!strcmp(sb->s_type->name, "cgroup2")));
}
static int selinux_is_sblabel_mnt(struct super_block *sb)
{
struct superblock_security_struct *sbsec = sb->s_security;
/*
* IMPORTANT: Double-check logic in this function when adding a new
* SECURITY_FS_USE_* definition!
*/
BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
switch (sbsec->behavior) {
case SECURITY_FS_USE_XATTR:
case SECURITY_FS_USE_TRANS:
case SECURITY_FS_USE_TASK:
case SECURITY_FS_USE_NATIVE:
return 1;
case SECURITY_FS_USE_GENFS:
return selinux_is_genfs_special_handling(sb);
/* Never allow relabeling on context mounts */
case SECURITY_FS_USE_MNTPOINT:
case SECURITY_FS_USE_NONE:
default:
return 0;
}
}
static int sb_finish_set_opts(struct super_block *sb)
{
struct superblock_security_struct *sbsec = sb->s_security;
struct dentry *root = sb->s_root;
struct inode *root_inode = d_backing_inode(root);
int rc = 0;
if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
/* Make sure that the xattr handler exists and that no
error other than -ENODATA is returned by getxattr on
the root directory. -ENODATA is ok, as this may be
the first boot of the SELinux kernel before we have
assigned xattr values to the filesystem. */
if (!(root_inode->i_opflags & IOP_XATTR)) {
pr_warn("SELinux: (dev %s, type %s) has no "
"xattr support\n", sb->s_id, sb->s_type->name);
rc = -EOPNOTSUPP;
goto out;
}
rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
if (rc < 0 && rc != -ENODATA) {
if (rc == -EOPNOTSUPP)
pr_warn("SELinux: (dev %s, type "
"%s) has no security xattr handler\n",
sb->s_id, sb->s_type->name);
else
pr_warn("SELinux: (dev %s, type "
"%s) getxattr errno %d\n", sb->s_id,
sb->s_type->name, -rc);
goto out;
}
}
sbsec->flags |= SE_SBINITIALIZED;
/*
* Explicitly set or clear SBLABEL_MNT. It's not sufficient to simply
* leave the flag untouched because sb_clone_mnt_opts might be handing
* us a superblock that needs the flag to be cleared.
*/
if (selinux_is_sblabel_mnt(sb))
sbsec->flags |= SBLABEL_MNT;
else
sbsec->flags &= ~SBLABEL_MNT;
/* Initialize the root inode. */
rc = inode_doinit_with_dentry(root_inode, root);
/* Initialize any other inodes associated with the superblock, e.g.
inodes created prior to initial policy load or inodes created
during get_sb by a pseudo filesystem that directly
populates itself. */
spin_lock(&sbsec->isec_lock);
next_inode:
if (!list_empty(&sbsec->isec_head)) {
struct inode_security_struct *isec =
list_entry(sbsec->isec_head.next,
struct inode_security_struct, list);
struct inode *inode = isec->inode;
list_del_init(&isec->list);
spin_unlock(&sbsec->isec_lock);
inode = igrab(inode);
if (inode) {
if (!IS_PRIVATE(inode))
inode_doinit(inode);
iput(inode);
}
spin_lock(&sbsec->isec_lock);
goto next_inode;
}
spin_unlock(&sbsec->isec_lock);
out:
return rc;
}
/*
* This function should allow an FS to ask what it's mount security
* options were so it can use those later for submounts, displaying
* mount options, or whatever.
*/
static int selinux_get_mnt_opts(const struct super_block *sb,
struct security_mnt_opts *opts)
{
int rc = 0, i;
struct superblock_security_struct *sbsec = sb->s_security;
char *context = NULL;
u32 len;
char tmp;
security_init_mnt_opts(opts);
if (!(sbsec->flags & SE_SBINITIALIZED))
return -EINVAL;
if (!selinux_state.initialized)
return -EINVAL;
/* make sure we always check enough bits to cover the mask */
BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS));
tmp = sbsec->flags & SE_MNTMASK;
/* count the number of mount options for this sb */
for (i = 0; i < NUM_SEL_MNT_OPTS; i++) {
if (tmp & 0x01)
opts->num_mnt_opts++;
tmp >>= 1;
}
/* Check if the Label support flag is set */
if (sbsec->flags & SBLABEL_MNT)
opts->num_mnt_opts++;
opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
if (!opts->mnt_opts) {
rc = -ENOMEM;
goto out_free;
}
opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
if (!opts->mnt_opts_flags) {
rc = -ENOMEM;
goto out_free;
}
i = 0;
if (sbsec->flags & FSCONTEXT_MNT) {
rc = security_sid_to_context(&selinux_state, sbsec->sid,
&context, &len);
if (rc)
goto out_free;
opts->mnt_opts[i] = context;
opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
}
if (sbsec->flags & CONTEXT_MNT) {
rc = security_sid_to_context(&selinux_state,
sbsec->mntpoint_sid,
&context, &len);
if (rc)
goto out_free;
opts->mnt_opts[i] = context;
opts->mnt_opts_flags[i++] = CONTEXT_MNT;
}
if (sbsec->flags & DEFCONTEXT_MNT) {
rc = security_sid_to_context(&selinux_state, sbsec->def_sid,
&context, &len);
if (rc)
goto out_free;
opts->mnt_opts[i] = context;
opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
}
if (sbsec->flags & ROOTCONTEXT_MNT) {
struct dentry *root = sbsec->sb->s_root;
struct inode_security_struct *isec = backing_inode_security(root);
rc = security_sid_to_context(&selinux_state, isec->sid,
&context, &len);
if (rc)
goto out_free;
opts->mnt_opts[i] = context;
opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
}
if (sbsec->flags & SBLABEL_MNT) {
opts->mnt_opts[i] = NULL;
opts->mnt_opts_flags[i++] = SBLABEL_MNT;
}
BUG_ON(i != opts->num_mnt_opts);
return 0;
out_free:
security_free_mnt_opts(opts);
return rc;
}
static int bad_option(struct superblock_security_struct *sbsec, char flag,
u32 old_sid, u32 new_sid)
{
char mnt_flags = sbsec->flags & SE_MNTMASK;
/* check if the old mount command had the same options */
if (sbsec->flags & SE_SBINITIALIZED)
if (!(sbsec->flags & flag) ||
(old_sid != new_sid))
return 1;
/* check if we were passed the same options twice,
* aka someone passed context=a,context=b
*/
if (!(sbsec->flags & SE_SBINITIALIZED))
if (mnt_flags & flag)
return 1;
return 0;
}
/*
* Allow filesystems with binary mount data to explicitly set mount point
* labeling information.
*/
static int selinux_set_mnt_opts(struct super_block *sb,
struct security_mnt_opts *opts,
unsigned long kern_flags,
unsigned long *set_kern_flags)
{
const struct cred *cred = current_cred();
int rc = 0, i;
struct superblock_security_struct *sbsec = sb->s_security;
const char *name = sb->s_type->name;
struct dentry *root = sbsec->sb->s_root;
struct inode_security_struct *root_isec;
u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
u32 defcontext_sid = 0;
char **mount_options = opts->mnt_opts;
int *flags = opts->mnt_opts_flags;
int num_opts = opts->num_mnt_opts;
mutex_lock(&sbsec->lock);
if (!selinux_state.initialized) {
if (!num_opts) {
/* Defer initialization until selinux_complete_init,
after the initial policy is loaded and the security
server is ready to handle calls. */
goto out;
}
rc = -EINVAL;
pr_warn("SELinux: Unable to set superblock options "
"before the security server is initialized\n");
goto out;
}
if (kern_flags && !set_kern_flags) {
/* Specifying internal flags without providing a place to
* place the results is not allowed */
rc = -EINVAL;
goto out;
}
/*
* Binary mount data FS will come through this function twice. Once
* from an explicit call and once from the generic calls from the vfs.
* Since the generic VFS calls will not contain any security mount data
* we need to skip the double mount verification.
*
* This does open a hole in which we will not notice if the first
* mount using this sb set explict options and a second mount using
* this sb does not set any security options. (The first options
* will be used for both mounts)
*/
if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
&& (num_opts == 0))
goto out;
root_isec = backing_inode_security_novalidate(root);
/*
* parse the mount options, check if they are valid sids.
* also check if someone is trying to mount the same sb more
* than once with different security options.
*/
for (i = 0; i < num_opts; i++) {
u32 sid;
if (flags[i] == SBLABEL_MNT)
continue;
rc = security_context_str_to_sid(&selinux_state,
mount_options[i], &sid,
GFP_KERNEL);
if (rc) {
pr_warn("SELinux: security_context_str_to_sid"
"(%s) failed for (dev %s, type %s) errno=%d\n",
mount_options[i], sb->s_id, name, rc);
goto out;
}
switch (flags[i]) {
case FSCONTEXT_MNT:
fscontext_sid = sid;
if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
fscontext_sid))
goto out_double_mount;
sbsec->flags |= FSCONTEXT_MNT;
break;
case CONTEXT_MNT:
context_sid = sid;
if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
context_sid))
goto out_double_mount;
sbsec->flags |= CONTEXT_MNT;
break;
case ROOTCONTEXT_MNT:
rootcontext_sid = sid;
if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
rootcontext_sid))
goto out_double_mount;
sbsec->flags |= ROOTCONTEXT_MNT;
break;
case DEFCONTEXT_MNT:
defcontext_sid = sid;
if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
defcontext_sid))
goto out_double_mount;
sbsec->flags |= DEFCONTEXT_MNT;
break;
default:
rc = -EINVAL;
goto out;
}
}
if (sbsec->flags & SE_SBINITIALIZED) {
/* previously mounted with options, but not on this attempt? */
if ((sbsec->flags & SE_MNTMASK) && !num_opts)
goto out_double_mount;
rc = 0;
goto out;
}
if (strcmp(sb->s_type->name, "proc") == 0)
sbsec->flags |= SE_SBPROC | SE_SBGENFS;
if (!strcmp(sb->s_type->name, "debugfs") ||
!strcmp(sb->s_type->name, "tracefs") ||
!strcmp(sb->s_type->name, "sysfs") ||
!strcmp(sb->s_type->name, "pstore") ||
!strcmp(sb->s_type->name, "binder") ||
!strcmp(sb->s_type->name, "cgroup") ||
!strcmp(sb->s_type->name, "cgroup2"))
sbsec->flags |= SE_SBGENFS;
if (!sbsec->behavior) {
/*
* Determine the labeling behavior to use for this
* filesystem type.
*/
rc = security_fs_use(&selinux_state, sb);
if (rc) {
pr_warn("%s: security_fs_use(%s) returned %d\n",
__func__, sb->s_type->name, rc);
goto out;
}
}
/*
* If this is a user namespace mount and the filesystem type is not
* explicitly whitelisted, then no contexts are allowed on the command
* line and security labels must be ignored.
*/
if (sb->s_user_ns != &init_user_ns &&
strcmp(sb->s_type->name, "tmpfs") &&
strcmp(sb->s_type->name, "ramfs") &&
strcmp(sb->s_type->name, "devpts")) {
if (context_sid || fscontext_sid || rootcontext_sid ||
defcontext_sid) {
rc = -EACCES;
goto out;
}
if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
rc = security_transition_sid(&selinux_state,
current_sid(),
current_sid(),
SECCLASS_FILE, NULL,
&sbsec->mntpoint_sid);
if (rc)
goto out;
}
goto out_set_opts;
}
/* sets the context of the superblock for the fs being mounted. */
if (fscontext_sid) {
rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
if (rc)
goto out;
sbsec->sid = fscontext_sid;
}
/*
* Switch to using mount point labeling behavior.
* sets the label used on all file below the mountpoint, and will set
* the superblock context if not already set.
*/
if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
sbsec->behavior = SECURITY_FS_USE_NATIVE;
*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
}
if (context_sid) {
if (!fscontext_sid) {
rc = may_context_mount_sb_relabel(context_sid, sbsec,
cred);
if (rc)
goto out;
sbsec->sid = context_sid;
} else {
rc = may_context_mount_inode_relabel(context_sid, sbsec,
cred);
if (rc)
goto out;
}
if (!rootcontext_sid)
rootcontext_sid = context_sid;
sbsec->mntpoint_sid = context_sid;
sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
}
if (rootcontext_sid) {
rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
cred);
if (rc)
goto out;
root_isec->sid = rootcontext_sid;
root_isec->initialized = LABEL_INITIALIZED;
}
if (defcontext_sid) {
if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
sbsec->behavior != SECURITY_FS_USE_NATIVE) {
rc = -EINVAL;
pr_warn("SELinux: defcontext option is "
"invalid for this filesystem type\n");
goto out;
}
if (defcontext_sid != sbsec->def_sid) {
rc = may_context_mount_inode_relabel(defcontext_sid,
sbsec, cred);
if (rc)
goto out;
}
sbsec->def_sid = defcontext_sid;
}
out_set_opts:
rc = sb_finish_set_opts(sb);
out:
mutex_unlock(&sbsec->lock);
return rc;
out_double_mount:
rc = -EINVAL;
pr_warn("SELinux: mount invalid. Same superblock, different "
"security settings for (dev %s, type %s)\n", sb->s_id, name);
goto out;
}
static int selinux_cmp_sb_context(const struct super_block *oldsb,
const struct super_block *newsb)
{
struct superblock_security_struct *old = oldsb->s_security;
struct superblock_security_struct *new = newsb->s_security;
char oldflags = old->flags & SE_MNTMASK;
char newflags = new->flags & SE_MNTMASK;
if (oldflags != newflags)
goto mismatch;
if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
goto mismatch;
if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
goto mismatch;
if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
goto mismatch;
if (oldflags & ROOTCONTEXT_MNT) {
struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
if (oldroot->sid != newroot->sid)
goto mismatch;
}
return 0;
mismatch:
pr_warn("SELinux: mount invalid. Same superblock, "
"different security settings for (dev %s, "
"type %s)\n", newsb->s_id, newsb->s_type->name);
return -EBUSY;
}
static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
struct super_block *newsb,
unsigned long kern_flags,
unsigned long *set_kern_flags)
{
int rc = 0;
const struct superblock_security_struct *oldsbsec = oldsb->s_security;
struct superblock_security_struct *newsbsec = newsb->s_security;
int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
int set_context = (oldsbsec->flags & CONTEXT_MNT);
int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
/*
* if the parent was able to be mounted it clearly had no special lsm
* mount options. thus we can safely deal with this superblock later
*/
if (!selinux_state.initialized)
return 0;
/*
* Specifying internal flags without providing a place to
* place the results is not allowed.
*/
if (kern_flags && !set_kern_flags)
return -EINVAL;
/* how can we clone if the old one wasn't set up?? */
BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
/* if fs is reusing a sb, make sure that the contexts match */
if (newsbsec->flags & SE_SBINITIALIZED) {
if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
return selinux_cmp_sb_context(oldsb, newsb);
}
mutex_lock(&newsbsec->lock);
newsbsec->flags = oldsbsec->flags;
newsbsec->sid = oldsbsec->sid;
newsbsec->def_sid = oldsbsec->def_sid;
newsbsec->behavior = oldsbsec->behavior;
if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
!(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
rc = security_fs_use(&selinux_state, newsb);
if (rc)
goto out;
}
if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
newsbsec->behavior = SECURITY_FS_USE_NATIVE;
*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
}
if (set_context) {
u32 sid = oldsbsec->mntpoint_sid;
if (!set_fscontext)
newsbsec->sid = sid;
if (!set_rootcontext) {
struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
newisec->sid = sid;
}
newsbsec->mntpoint_sid = sid;
}
if (set_rootcontext) {
const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
newisec->sid = oldisec->sid;
}
sb_finish_set_opts(newsb);
out:
mutex_unlock(&newsbsec->lock);
return rc;
}
static int selinux_parse_opts_str(char *options,
struct security_mnt_opts *opts)
{
char *p;
char *context = NULL, *defcontext = NULL;
char *fscontext = NULL, *rootcontext = NULL;
int rc, num_mnt_opts = 0;
opts->num_mnt_opts = 0;
/* Standard string-based options. */
while ((p = strsep(&options, "|")) != NULL) {
int token;
substring_t args[MAX_OPT_ARGS];
if (!*p)
continue;
token = match_token(p, tokens, args);
switch (token) {
case Opt_context:
if (context || defcontext) {
rc = -EINVAL;
pr_warn(SEL_MOUNT_FAIL_MSG);
goto out_err;
}
context = match_strdup(&args[0]);
if (!context) {
rc = -ENOMEM;
goto out_err;
}
break;
case Opt_fscontext:
if (fscontext) {
rc = -EINVAL;
pr_warn(SEL_MOUNT_FAIL_MSG);
goto out_err;
}
fscontext = match_strdup(&args[0]);
if (!fscontext) {
rc = -ENOMEM;
goto out_err;
}
break;
case Opt_rootcontext:
if (rootcontext) {
rc = -EINVAL;
pr_warn(SEL_MOUNT_FAIL_MSG);
goto out_err;
}
rootcontext = match_strdup(&args[0]);
if (!rootcontext) {
rc = -ENOMEM;
goto out_err;
}
break;
case Opt_defcontext:
if (context || defcontext) {
rc = -EINVAL;
pr_warn(SEL_MOUNT_FAIL_MSG);
goto out_err;
}
defcontext = match_strdup(&args[0]);
if (!defcontext) {
rc = -ENOMEM;
goto out_err;
}
break;
case Opt_labelsupport:
break;
default:
rc = -EINVAL;
pr_warn("SELinux: unknown mount option\n");
goto out_err;
}
}
rc = -ENOMEM;
opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_KERNEL);
if (!opts->mnt_opts)
goto out_err;
opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int),
GFP_KERNEL);
if (!opts->mnt_opts_flags)
goto out_err;
if (fscontext) {
opts->mnt_opts[num_mnt_opts] = fscontext;
opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
}
if (context) {
opts->mnt_opts[num_mnt_opts] = context;
opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
}
if (rootcontext) {
opts->mnt_opts[num_mnt_opts] = rootcontext;
opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
}
if (defcontext) {
opts->mnt_opts[num_mnt_opts] = defcontext;
opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
}
opts->num_mnt_opts = num_mnt_opts;
return 0;
out_err:
security_free_mnt_opts(opts);
kfree(context);
kfree(defcontext);
kfree(fscontext);
kfree(rootcontext);
return rc;
}
/*
* string mount options parsing and call set the sbsec
*/
static int superblock_doinit(struct super_block *sb, void *data)
{
int rc = 0;
char *options = data;
struct security_mnt_opts opts;
security_init_mnt_opts(&opts);
if (!data)
goto out;
BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
rc = selinux_parse_opts_str(options, &opts);
if (rc)
goto out_err;
out:
rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
out_err:
security_free_mnt_opts(&opts);
return rc;
}
static void selinux_write_opts(struct seq_file *m,
struct security_mnt_opts *opts)
{
int i;
char *prefix;
for (i = 0; i < opts->num_mnt_opts; i++) {
char *has_comma;
if (opts->mnt_opts[i])
has_comma = strchr(opts->mnt_opts[i], ',');
else
has_comma = NULL;
switch (opts->mnt_opts_flags[i]) {
case CONTEXT_MNT:
prefix = CONTEXT_STR;
break;
case FSCONTEXT_MNT:
prefix = FSCONTEXT_STR;
break;
case ROOTCONTEXT_MNT:
prefix = ROOTCONTEXT_STR;
break;
case DEFCONTEXT_MNT:
prefix = DEFCONTEXT_STR;
break;
case SBLABEL_MNT:
seq_putc(m, ',');
seq_puts(m, LABELSUPP_STR);
continue;
default:
BUG();
return;
};
/* we need a comma before each option */
seq_putc(m, ',');
seq_puts(m, prefix);
if (has_comma)
seq_putc(m, '\"');
seq_escape(m, opts->mnt_opts[i], "\"\n\\");
if (has_comma)
seq_putc(m, '\"');
}
}
static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
{
struct security_mnt_opts opts;
int rc;
rc = selinux_get_mnt_opts(sb, &opts);
if (rc) {
/* before policy load we may get EINVAL, don't show anything */
if (rc == -EINVAL)
rc = 0;
return rc;
}
selinux_write_opts(m, &opts);
security_free_mnt_opts(&opts);
return rc;
}
static inline u16 inode_mode_to_security_class(umode_t mode)
{
switch (mode & S_IFMT) {
case S_IFSOCK:
return SECCLASS_SOCK_FILE;
case S_IFLNK:
return SECCLASS_LNK_FILE;
case S_IFREG:
return SECCLASS_FILE;
case S_IFBLK:
return SECCLASS_BLK_FILE;
case S_IFDIR:
return SECCLASS_DIR;
case S_IFCHR:
return SECCLASS_CHR_FILE;
case S_IFIFO:
return SECCLASS_FIFO_FILE;
}
return SECCLASS_FILE;
}
static inline int default_protocol_stream(int protocol)
{
return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
}
static inline int default_protocol_dgram(int protocol)
{
return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
}
static inline u16 socket_type_to_security_class(int family, int type, int protocol)
{
int extsockclass = selinux_policycap_extsockclass();
switch (family) {
case PF_UNIX:
switch (type) {
case SOCK_STREAM:
case SOCK_SEQPACKET:
return SECCLASS_UNIX_STREAM_SOCKET;
case SOCK_DGRAM:
case SOCK_RAW:
return SECCLASS_UNIX_DGRAM_SOCKET;
}
break;
case PF_INET:
case PF_INET6:
switch (type) {
case SOCK_STREAM:
case SOCK_SEQPACKET:
if (default_protocol_stream(protocol))
return SECCLASS_TCP_SOCKET;
else if (extsockclass && protocol == IPPROTO_SCTP)
return SECCLASS_SCTP_SOCKET;
else
return SECCLASS_RAWIP_SOCKET;
case SOCK_DGRAM:
if (default_protocol_dgram(protocol))
return SECCLASS_UDP_SOCKET;
else if (extsockclass && (protocol == IPPROTO_ICMP ||
protocol == IPPROTO_ICMPV6))
return SECCLASS_ICMP_SOCKET;
else
return SECCLASS_RAWIP_SOCKET;
case SOCK_DCCP:
return SECCLASS_DCCP_SOCKET;
default:
return SECCLASS_RAWIP_SOCKET;
}
break;
case PF_NETLINK:
switch (protocol) {
case NETLINK_ROUTE:
return SECCLASS_NETLINK_ROUTE_SOCKET;
case NETLINK_SOCK_DIAG:
return SECCLASS_NETLINK_TCPDIAG_SOCKET;
case NETLINK_NFLOG:
return SECCLASS_NETLINK_NFLOG_SOCKET;
case NETLINK_XFRM:
return SECCLASS_NETLINK_XFRM_SOCKET;
case NETLINK_SELINUX:
return SECCLASS_NETLINK_SELINUX_SOCKET;
case NETLINK_ISCSI:
return SECCLASS_NETLINK_ISCSI_SOCKET;
case NETLINK_AUDIT:
return SECCLASS_NETLINK_AUDIT_SOCKET;
case NETLINK_FIB_LOOKUP:
return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
case NETLINK_CONNECTOR:
return SECCLASS_NETLINK_CONNECTOR_SOCKET;
case NETLINK_NETFILTER:
return SECCLASS_NETLINK_NETFILTER_SOCKET;
case NETLINK_DNRTMSG:
return SECCLASS_NETLINK_DNRT_SOCKET;
case NETLINK_KOBJECT_UEVENT:
return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
case NETLINK_GENERIC:
return SECCLASS_NETLINK_GENERIC_SOCKET;
case NETLINK_SCSITRANSPORT:
return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
case NETLINK_RDMA:
return SECCLASS_NETLINK_RDMA_SOCKET;
case NETLINK_CRYPTO:
return SECCLASS_NETLINK_CRYPTO_SOCKET;
default:
return SECCLASS_NETLINK_SOCKET;
}
case PF_PACKET:
return SECCLASS_PACKET_SOCKET;
case PF_KEY:
return SECCLASS_KEY_SOCKET;
case PF_APPLETALK:
return SECCLASS_APPLETALK_SOCKET;
}
if (extsockclass) {
switch (family) {
case PF_AX25:
return SECCLASS_AX25_SOCKET;
case PF_IPX:
return SECCLASS_IPX_SOCKET;
case PF_NETROM:
return SECCLASS_NETROM_SOCKET;
case PF_ATMPVC:
return SECCLASS_ATMPVC_SOCKET;
case PF_X25:
return SECCLASS_X25_SOCKET;
case PF_ROSE:
return SECCLASS_ROSE_SOCKET;
case PF_DECnet:
return SECCLASS_DECNET_SOCKET;
case PF_ATMSVC:
return SECCLASS_ATMSVC_SOCKET;
case PF_RDS:
return SECCLASS_RDS_SOCKET;
case PF_IRDA:
return SECCLASS_IRDA_SOCKET;
case PF_PPPOX:
return SECCLASS_PPPOX_SOCKET;
case PF_LLC:
return SECCLASS_LLC_SOCKET;
case PF_CAN:
return SECCLASS_CAN_SOCKET;
case PF_TIPC:
return SECCLASS_TIPC_SOCKET;
case PF_BLUETOOTH:
return SECCLASS_BLUETOOTH_SOCKET;
case PF_IUCV:
return SECCLASS_IUCV_SOCKET;
case PF_RXRPC:
return SECCLASS_RXRPC_SOCKET;
case PF_ISDN:
return SECCLASS_ISDN_SOCKET;
case PF_PHONET:
return SECCLASS_PHONET_SOCKET;
case PF_IEEE802154:
return SECCLASS_IEEE802154_SOCKET;
case PF_CAIF:
return SECCLASS_CAIF_SOCKET;
case PF_ALG:
return SECCLASS_ALG_SOCKET;
case PF_NFC:
return SECCLASS_NFC_SOCKET;
case PF_VSOCK:
return SECCLASS_VSOCK_SOCKET;
case PF_KCM:
return SECCLASS_KCM_SOCKET;
case PF_QIPCRTR:
return SECCLASS_QIPCRTR_SOCKET;
case PF_SMC:
return SECCLASS_SMC_SOCKET;
case PF_XDP:
return SECCLASS_XDP_SOCKET;
#if PF_MAX > 45
#error New address family defined, please update this function.
#endif
}
}
return SECCLASS_SOCKET;
}
static int selinux_genfs_get_sid(struct dentry *dentry,
u16 tclass,
u16 flags,
u32 *sid)
{
int rc;
struct super_block *sb = dentry->d_sb;
char *buffer, *path;
buffer = (char *)__get_free_page(GFP_KERNEL);
if (!buffer)
return -ENOMEM;
path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
if (IS_ERR(path))
rc = PTR_ERR(path);
else {
if (flags & SE_SBPROC) {
/* each process gets a /proc/PID/ entry. Strip off the
* PID part to get a valid selinux labeling.
* e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
while (path[1] >= '0' && path[1] <= '9') {
path[1] = '/';
path++;
}
}
rc = security_genfs_sid(&selinux_state, sb->s_type->name,
path, tclass, sid);
if (rc == -ENOENT) {
/* No match in policy, mark as unlabeled. */
*sid = SECINITSID_UNLABELED;
rc = 0;
}
}
free_page((unsigned long)buffer);
return rc;
}
/* The inode's security attributes must be initialized before first use. */
static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
{
struct superblock_security_struct *sbsec = NULL;
struct inode_security_struct *isec = inode->i_security;
u32 task_sid, sid = 0;
u16 sclass;
struct dentry *dentry;
#define INITCONTEXTLEN 255
char *context = NULL;
unsigned len = 0;
int rc = 0;
if (isec->initialized == LABEL_INITIALIZED)
return 0;
spin_lock(&isec->lock);
if (isec->initialized == LABEL_INITIALIZED)
goto out_unlock;
if (isec->sclass == SECCLASS_FILE)
isec->sclass = inode_mode_to_security_class(inode->i_mode);
sbsec = inode->i_sb->s_security;
if (!(sbsec->flags & SE_SBINITIALIZED)) {
/* Defer initialization until selinux_complete_init,
after the initial policy is loaded and the security
server is ready to handle calls. */
spin_lock(&sbsec->isec_lock);
if (list_empty(&isec->list))
list_add(&isec->list, &sbsec->isec_head);
spin_unlock(&sbsec->isec_lock);
goto out_unlock;
}
sclass = isec->sclass;
task_sid = isec->task_sid;
sid = isec->sid;
isec->initialized = LABEL_PENDING;
spin_unlock(&isec->lock);
switch (sbsec->behavior) {
case SECURITY_FS_USE_NATIVE:
break;
case SECURITY_FS_USE_XATTR:
if (!(inode->i_opflags & IOP_XATTR)) {
sid = sbsec->def_sid;
break;
}
/* Need a dentry, since the xattr API requires one.
Life would be simpler if we could just pass the inode. */
if (opt_dentry) {
/* Called from d_instantiate or d_splice_alias. */
dentry = dget(opt_dentry);
} else {
/*
* Called from selinux_complete_init, try to find a dentry.
* Some filesystems really want a connected one, so try
* that first. We could split SECURITY_FS_USE_XATTR in
* two, depending upon that...
*/
dentry = d_find_alias(inode);
if (!dentry)
dentry = d_find_any_alias(inode);
}
if (!dentry) {
/*
* this is can be hit on boot when a file is accessed
* before the policy is loaded. When we load policy we
* may find inodes that have no dentry on the
* sbsec->isec_head list. No reason to complain as these
* will get fixed up the next time we go through
* inode_doinit with a dentry, before these inodes could
* be used again by userspace.
*/
goto out_invalid;
}
len = INITCONTEXTLEN;
context = kmalloc(len+1, GFP_NOFS);
if (!context) {
rc = -ENOMEM;
dput(dentry);
goto out;
}
context[len] = '\0';
rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
if (rc == -ERANGE) {
kfree(context);
/* Need a larger buffer. Query for the right size. */
rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
if (rc < 0) {
dput(dentry);
goto out;
}
len = rc;
context = kmalloc(len+1, GFP_NOFS);
if (!context) {
rc = -ENOMEM;
dput(dentry);
goto out;
}
context[len] = '\0';
rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
}
dput(dentry);
if (rc < 0) {
if (rc != -ENODATA) {
pr_warn("SELinux: %s: getxattr returned "
"%d for dev=%s ino=%ld\n", __func__,
-rc, inode->i_sb->s_id, inode->i_ino);
kfree(context);
goto out;
}
/* Map ENODATA to the default file SID */
sid = sbsec->def_sid;
rc = 0;
} else {
rc = security_context_to_sid_default(&selinux_state,
context, rc, &sid,
sbsec->def_sid,
GFP_NOFS);
if (rc) {
char *dev = inode->i_sb->s_id;
unsigned long ino = inode->i_ino;
if (rc == -EINVAL) {
if (printk_ratelimit())
pr_notice("SELinux: inode=%lu on dev=%s was found to have an invalid "
"context=%s. This indicates you may need to relabel the inode or the "
"filesystem in question.\n", ino, dev, context);
} else {
pr_warn("SELinux: %s: context_to_sid(%s) "
"returned %d for dev=%s ino=%ld\n",
__func__, context, -rc, dev, ino);
}
kfree(context);
/* Leave with the unlabeled SID */
rc = 0;
break;
}
}
kfree(context);
break;
case SECURITY_FS_USE_TASK:
sid = task_sid;
break;
case SECURITY_FS_USE_TRANS:
/* Default to the fs SID. */
sid = sbsec->sid;
/* Try to obtain a transition SID. */
rc = security_transition_sid(&selinux_state, task_sid, sid,
sclass, NULL, &sid);
if (rc)
goto out;
break;
case SECURITY_FS_USE_MNTPOINT:
sid = sbsec->mntpoint_sid;
break;
default:
/* Default to the fs superblock SID. */
sid = sbsec->sid;
if ((sbsec->flags & SE_SBGENFS) && !S_ISLNK(inode->i_mode)) {
/* We must have a dentry to determine the label on
* procfs inodes */
if (opt_dentry) {
/* Called from d_instantiate or
* d_splice_alias. */
dentry = dget(opt_dentry);
} else {
/* Called from selinux_complete_init, try to
* find a dentry. Some filesystems really want
* a connected one, so try that first.
*/
dentry = d_find_alias(inode);
if (!dentry)
dentry = d_find_any_alias(inode);
}
/*
* This can be hit on boot when a file is accessed
* before the policy is loaded. When we load policy we
* may find inodes that have no dentry on the
* sbsec->isec_head list. No reason to complain as
* these will get fixed up the next time we go through
* inode_doinit() with a dentry, before these inodes
* could be used again by userspace.
*/
if (!dentry)
goto out_invalid;
rc = selinux_genfs_get_sid(dentry, sclass,
sbsec->flags, &sid);
dput(dentry);
if (rc)
goto out;
}
break;
}
out:
spin_lock(&isec->lock);
if (isec->initialized == LABEL_PENDING) {
if (rc) {
isec->initialized = LABEL_INVALID;
goto out_unlock;
}
isec->initialized = LABEL_INITIALIZED;
isec->sid = sid;
}
out_unlock:
spin_unlock(&isec->lock);
return rc;
out_invalid:
spin_lock(&isec->lock);
if (isec->initialized == LABEL_PENDING) {
isec->initialized = LABEL_INVALID;
isec->sid = sid;
}
spin_unlock(&isec->lock);
return 0;
}
/* Convert a Linux signal to an access vector. */
static inline u32 signal_to_av(int sig)
{
u32 perm = 0;
switch (sig) {
case SIGCHLD:
/* Commonly granted from child to parent. */
perm = PROCESS__SIGCHLD;
break;
case SIGKILL:
/* Cannot be caught or ignored */
perm = PROCESS__SIGKILL;
break;
case SIGSTOP:
/* Cannot be caught or ignored */
perm = PROCESS__SIGSTOP;
break;
default:
/* All other signals. */
perm = PROCESS__SIGNAL;
break;
}
return perm;
}
#if CAP_LAST_CAP > 63
#error Fix SELinux to handle capabilities > 63.
#endif
/* Check whether a task is allowed to use a capability. */
static int cred_has_capability(const struct cred *cred,
int cap, unsigned int opts, bool initns)
{
struct common_audit_data ad;
struct av_decision avd;
u16 sclass;
u32 sid = cred_sid(cred);
u32 av = CAP_TO_MASK(cap);
int rc;
ad.type = LSM_AUDIT_DATA_CAP;
ad.u.cap = cap;
switch (CAP_TO_INDEX(cap)) {
case 0:
sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
break;
case 1:
sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
break;
default:
pr_err("SELinux: out of range capability %d\n", cap);
BUG();
return -EINVAL;
}
rc = avc_has_perm_noaudit(&selinux_state,
sid, sid, sclass, av, 0, &avd);
if (!(opts & CAP_OPT_NOAUDIT)) {
int rc2 = avc_audit(&selinux_state,
sid, sid, sclass, av, &avd, rc, &ad, 0);
if (rc2)
return rc2;
}
return rc;
}
/* Check whether a task has a particular permission to an inode.
The 'adp' parameter is optional and allows other audit
data to be passed (e.g. the dentry). */
static int inode_has_perm(const struct cred *cred,
struct inode *inode,
u32 perms,
struct common_audit_data *adp)
{
struct inode_security_struct *isec;
u32 sid;
validate_creds(cred);
if (unlikely(IS_PRIVATE(inode)))
return 0;
sid = cred_sid(cred);
isec = inode->i_security;
return avc_has_perm(&selinux_state,
sid, isec->sid, isec->sclass, perms, adp);
}
/* Same as inode_has_perm, but pass explicit audit data containing
the dentry to help the auditing code to more easily generate the
pathname if needed. */
static inline int dentry_has_perm(const struct cred *cred,
struct dentry *dentry,
u32 av)
{
struct inode *inode = d_backing_inode(dentry);
struct common_audit_data ad;
ad.type = LSM_AUDIT_DATA_DENTRY;
ad.u.dentry = dentry;
__inode_security_revalidate(inode, dentry, true);
return inode_has_perm(cred, inode, av, &ad);
}
/* Same as inode_has_perm, but pass explicit audit data containing
the path to help the auditing code to more easily generate the
pathname if needed. */
static inline int path_has_perm(const struct cred *cred,
const struct path *path,
u32 av)
{
struct inode *inode = d_backing_inode(path->dentry);
struct common_audit_data ad;
ad.type = LSM_AUDIT_DATA_PATH;
ad.u.path = *path;
__inode_security_revalidate(inode, path->dentry, true);
return inode_has_perm(cred, inode, av, &ad);
}
/* Same as path_has_perm, but uses the inode from the file struct. */
static inline int file_path_has_perm(const struct cred *cred,
struct file *file,
u32 av)
{
struct common_audit_data ad;
ad.type = LSM_AUDIT_DATA_FILE;
ad.u.file = file;
return inode_has_perm(cred, file_inode(file), av, &ad);
}
#ifdef CONFIG_BPF_SYSCALL
static int bpf_fd_pass(struct file *file, u32 sid);
#endif
/* Check whether a task can use an open file descriptor to
access an inode in a given way. Check access to the
descriptor itself, and then use dentry_has_perm to
check a particular permission to the file.
Access to the descriptor is implicitly granted if it
has the same SID as the process. If av is zero, then
access to the file is not checked, e.g. for cases
where only the descriptor is affected like seek. */
static int file_has_perm(const struct cred *cred,
struct file *file,
u32 av)
{
struct file_security_struct *fsec = file->f_security;
struct inode *inode = file_inode(file);
struct common_audit_data ad;
u32 sid = cred_sid(cred);
int rc;
ad.type = LSM_AUDIT_DATA_FILE;
ad.u.file = file;
if (sid != fsec->sid) {
rc = avc_has_perm(&selinux_state,
sid, fsec->sid,
SECCLASS_FD,
FD__USE,
&ad);
if (rc)
goto out;
}
#ifdef CONFIG_BPF_SYSCALL
rc = bpf_fd_pass(file, cred_sid(cred));
if (rc)
return rc;
#endif
/* av is zero if only checking access to the descriptor. */
rc = 0;
if (av)
rc = inode_has_perm(cred, inode, av, &ad);
out:
return rc;
}
/*
* Determine the label for an inode that might be unioned.
*/
static int
selinux_determine_inode_label(const struct task_security_struct *tsec,
struct inode *dir,
const struct qstr *name, u16 tclass,
u32 *_new_isid)
{
const struct superblock_security_struct *sbsec = dir->i_sb->s_security;
if ((sbsec->flags & SE_SBINITIALIZED) &&
(sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
*_new_isid = sbsec->mntpoint_sid;
} else if ((sbsec->flags & SBLABEL_MNT) &&
tsec->create_sid) {
*_new_isid = tsec->create_sid;
} else {
const struct inode_security_struct *dsec = inode_security(dir);
return security_transition_sid(&selinux_state, tsec->sid,
dsec->sid, tclass,
name, _new_isid);
}
return 0;
}
/* Check whether a task can create a file. */
static int may_create(struct inode *dir,
struct dentry *dentry,
u16 tclass)
{
const struct task_security_struct *tsec = current_security();
struct inode_security_struct *dsec;
struct superblock_security_struct *sbsec;
u32 sid, newsid;
struct common_audit_data ad;
int rc;
dsec = inode_security(dir);
sbsec = dir->i_sb->s_security;
sid = tsec->sid;
ad.type = LSM_AUDIT_DATA_DENTRY;
ad.u.dentry = dentry;
rc = avc_has_perm(&selinux_state,
sid, dsec->sid, SECCLASS_DIR,
DIR__ADD_NAME | DIR__SEARCH,
&ad);
if (rc)
return rc;
rc = selinux_determine_inode_label(current_security(), dir,
&dentry->d_name, tclass, &newsid);
if (rc)
return rc;
rc = avc_has_perm(&selinux_state,
sid, newsid, tclass, FILE__CREATE, &ad);
if (rc)
return rc;
return avc_has_perm(&selinux_state,
newsid, sbsec->sid,
SECCLASS_FILESYSTEM,
FILESYSTEM__ASSOCIATE, &ad);
}
#define MAY_LINK 0
#define MAY_UNLINK 1
#define MAY_RMDIR 2
/* Check whether a task can link, unlink, or rmdir a file/directory. */
static int may_link(struct inode *dir,
struct dentry *dentry,
int kind)
{
struct inode_security_struct *dsec, *isec;
struct common_audit_data ad;
u32 sid = current_sid();
u32 av;
int rc;
dsec = inode_security(dir);
isec = backing_inode_security(dentry);
ad.type = LSM_AUDIT_DATA_DENTRY;
ad.u.dentry = dentry;
av = DIR__SEARCH;
av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
rc = avc_has_perm(&selinux_state,
sid, dsec->sid, SECCLASS_DIR, av, &ad);
if (rc)
return rc;
switch (kind) {
case MAY_LINK:
av = FILE__LINK;
break;
case MAY_UNLINK:
av = FILE__UNLINK;
break;
case MAY_RMDIR:
av = DIR__RMDIR;
break;
default:
pr_warn("SELinux: %s: unrecognized kind %d\n",
__func__, kind);
return 0;
}
rc = avc_has_perm(&selinux_state,
sid, isec->sid, isec->sclass, av, &ad);
return rc;
}
static inline int may_rename(struct inode *old_dir,
struct dentry *old_dentry,
struct inode *new_dir,
struct dentry *new_dentry)
{
struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
struct common_audit_data ad;
u32 sid = current_sid();
u32 av;
int old_is_dir, new_is_dir;
int rc;
old_dsec = inode_security(old_dir);
old_isec = backing_inode_security(old_dentry);
old_is_dir = d_is_dir(old_dentry);
new_dsec = inode_security(new_dir);
ad.type = LSM_AUDIT_DATA_DENTRY;
ad.u.dentry = old_dentry;
rc = avc_has_perm(&selinux_state,
sid, old_dsec->sid, SECCLASS_DIR,
DIR__REMOVE_NAME | DIR__SEARCH, &ad);
if (rc)
return rc;
rc = avc_has_perm(&selinux_state,
sid, old_isec->sid,
old_isec->sclass, FILE__RENAME, &ad);
if (rc)
return rc;
if (old_is_dir && new_dir != old_dir) {
rc = avc_has_perm(&selinux_state,
sid, old_isec->sid,
old_isec->sclass, DIR__REPARENT, &ad);
if (rc)
return rc;
}
ad.u.dentry = new_dentry;
av = DIR__ADD_NAME | DIR__SEARCH;
if (d_is_positive(new_dentry))
av |= DIR__REMOVE_NAME;
rc = avc_has_perm(&selinux_state,
sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
if (rc)
return rc;
if (d_is_positive(new_dentry)) {
new_isec = backing_inode_security(new_dentry);
new_is_dir = d_is_dir(new_dentry);
rc = avc_has_perm(&selinux_state,
sid, new_isec->sid,
new_isec->sclass,
(new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
if (rc)
return rc;
}
return 0;
}
/* Check whether a task can perform a filesystem operation. */
static int superblock_has_perm(const struct cred *cred,
struct super_block *sb,
u32 perms,
struct common_audit_data *ad)
{
struct superblock_security_struct *sbsec;
u32 sid = cred_sid(cred);
sbsec = sb->s_security;
return avc_has_perm(&selinux_state,
sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
}
/* Convert a Linux mode and permission mask to an access vector. */
static inline u32 file_mask_to_av(int mode, int mask)
{
u32 av = 0;
if (!S_ISDIR(mode)) {
if (mask & MAY_EXEC)
av |= FILE__EXECUTE;
if (mask & MAY_READ)
av |= FILE__READ;
if (mask & MAY_APPEND)
av |= FILE__APPEND;
else if (mask & MAY_WRITE)
av |= FILE__WRITE;
} else {
if (mask & MAY_EXEC)
av |= DIR__SEARCH;
if (mask & MAY_WRITE)
av |= DIR__WRITE;
if (mask & MAY_READ)
av |= DIR__READ;
}
return av;
}
/* Convert a Linux file to an access vector. */
static inline u32 file_to_av(struct file *file)
{
u32 av = 0;
if (file->f_mode & FMODE_READ)
av |= FILE__READ;
if (file->f_mode & FMODE_WRITE) {
if (file->f_flags & O_APPEND)
av |= FILE__APPEND;
else
av |= FILE__WRITE;
}
if (!av) {
/*
* Special file opened with flags 3 for ioctl-only use.
*/
av = FILE__IOCTL;
}
return av;
}
/*
* Convert a file to an access vector and include the correct open
* open permission.
*/
static inline u32 open_file_to_av(struct file *file)
{
u32 av = file_to_av(file);
struct inode *inode = file_inode(file);
if (selinux_policycap_openperm() &&
inode->i_sb->s_magic != SOCKFS_MAGIC)
av |= FILE__OPEN;
return av;
}
/* Hook functions begin here. */
static int selinux_binder_set_context_mgr(struct task_struct *mgr)
{
u32 mysid = current_sid();
u32 mgrsid = task_sid(mgr);
return avc_has_perm(&selinux_state,
mysid, mgrsid, SECCLASS_BINDER,
BINDER__SET_CONTEXT_MGR, NULL);
}
static int selinux_binder_transaction(struct task_struct *from,
struct task_struct *to)
{
u32 mysid = current_sid();
u32 fromsid = task_sid(from);
u32 tosid = task_sid(to);
int rc;
if (mysid != fromsid) {
rc = avc_has_perm(&selinux_state,
mysid, fromsid, SECCLASS_BINDER,
BINDER__IMPERSONATE, NULL);
if (rc)
return rc;
}
return avc_has_perm(&selinux_state,
fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
NULL);
}
static int selinux_binder_transfer_binder(struct task_struct *from,
struct task_struct *to)
{
u32 fromsid = task_sid(from);
u32 tosid = task_sid(to);
return avc_has_perm(&selinux_state,
fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
NULL);
}
static int selinux_binder_transfer_file(struct task_struct *from,
struct task_struct *to,
struct file *file)
{
u32 sid = task_sid(to);
struct file_security_struct *fsec = file->f_security;
struct dentry *dentry = file->f_path.dentry;
struct inode_security_struct *isec;
struct common_audit_data ad;
int rc;
ad.type = LSM_AUDIT_DATA_PATH;
ad.u.path = file->f_path;
if (sid != fsec->sid) {
rc = avc_has_perm(&selinux_state,
sid, fsec->sid,
SECCLASS_FD,
FD__USE,
&ad);
if (rc)
return rc;
}
#ifdef CONFIG_BPF_SYSCALL
rc = bpf_fd_pass(file, sid);
if (rc)
return rc;
#endif
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
return 0;
isec = backing_inode_security(dentry);
return avc_has_perm(&selinux_state,
sid, isec->sid, isec->sclass, file_to_av(file),
&ad);
}
static int selinux_ptrace_access_check(struct task_struct *child,
unsigned int mode)
{
u32 sid = current_sid();
u32 csid = task_sid(child);
if (mode & PTRACE_MODE_READ)
return avc_has_perm(&selinux_state,
sid, csid, SECCLASS_FILE, FILE__READ, NULL);
return avc_has_perm(&selinux_state,
sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
}
static int selinux_ptrace_traceme(struct task_struct *parent)
{
return avc_has_perm(&selinux_state,
task_sid(parent), current_sid(), SECCLASS_PROCESS,
PROCESS__PTRACE, NULL);
}
static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
kernel_cap_t *inheritable, kernel_cap_t *permitted)
{
return avc_has_perm(&selinux_state,
current_sid(), task_sid(target), SECCLASS_PROCESS,
PROCESS__GETCAP, NULL);
}
static int selinux_capset(struct cred *new, const struct cred *old,
const kernel_cap_t *effective,
const kernel_cap_t *inheritable,
const kernel_cap_t *permitted)
{
return avc_has_perm(&selinux_state,
cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
PROCESS__SETCAP, NULL);
}
/*
* (This comment used to live with the selinux_task_setuid hook,
* which was removed).
*
* Since setuid only affects the current process, and since the SELinux
* controls are not based on the Linux identity attributes, SELinux does not
* need to control this operation. However, SELinux does control the use of
* the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
*/
static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
int cap, unsigned int opts)
{
return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
}
static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
{
const struct cred *cred = current_cred();
int rc = 0;
if (!sb)
return 0;
switch (cmds) {
case Q_SYNC:
case Q_QUOTAON:
case Q_QUOTAOFF:
case Q_SETINFO:
case Q_SETQUOTA:
rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
break;
case Q_GETFMT:
case Q_GETINFO:
case Q_GETQUOTA:
rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
break;
default:
rc = 0; /* let the kernel handle invalid cmds */
break;
}
return rc;
}
static int selinux_quota_on(struct dentry *dentry)
{
const struct cred *cred = current_cred();
return dentry_has_perm(cred, dentry, FILE__QUOTAON);
}
static int selinux_syslog(int type)
{
switch (type) {
case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */
case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
return avc_has_perm(&selinux_state,
current_sid(), SECINITSID_KERNEL,
SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */
/* Set level of messages printed to console */
case SYSLOG_ACTION_CONSOLE_LEVEL:
return avc_has_perm(&selinux_state,
current_sid(), SECINITSID_KERNEL,
SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
NULL);
}
/* All other syslog types */
return avc_has_perm(&selinux_state,
current_sid(), SECINITSID_KERNEL,
SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
}
/*
* Check that a process has enough memory to allocate a new virtual
* mapping. 0 means there is enough memory for the allocation to
* succeed and -ENOMEM implies there is not.
*
* Do not audit the selinux permission check, as this is applied to all
* processes that allocate mappings.
*/
static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
{
int rc, cap_sys_admin = 0;
rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
CAP_OPT_NOAUDIT, true);
if (rc == 0)
cap_sys_admin = 1;
return cap_sys_admin;
}
/* binprm security operations */
static u32 ptrace_parent_sid(void)
{
u32 sid = 0;
struct task_struct *tracer;
rcu_read_lock();
tracer = ptrace_parent(current);
if (tracer)
sid = task_sid(tracer);
rcu_read_unlock();
return sid;
}
static int check_nnp_nosuid(const struct linux_binprm *bprm,
const struct task_security_struct *old_tsec,
const struct task_security_struct *new_tsec)
{
int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
int rc;
u32 av;
if (!nnp && !nosuid)
return 0; /* neither NNP nor nosuid */
if (new_tsec->sid == old_tsec->sid)
return 0; /* No change in credentials */
/*
* If the policy enables the nnp_nosuid_transition policy capability,
* then we permit transitions under NNP or nosuid if the
* policy allows the corresponding permission between
* the old and new contexts.
*/
if (selinux_policycap_nnp_nosuid_transition()) {
av = 0;
if (nnp)
av |= PROCESS2__NNP_TRANSITION;
if (nosuid)
av |= PROCESS2__NOSUID_TRANSITION;
rc = avc_has_perm(&selinux_state,
old_tsec->sid, new_tsec->sid,
SECCLASS_PROCESS2, av, NULL);
if (!rc)
return 0;
}
/*
* We also permit NNP or nosuid transitions to bounded SIDs,
* i.e. SIDs that are guaranteed to only be allowed a subset
* of the permissions of the current SID.
*/
rc = security_bounded_transition(&selinux_state, old_tsec->sid,
new_tsec->sid);
if (!rc)
return 0;
/*
* On failure, preserve the errno values for NNP vs nosuid.
* NNP: Operation not permitted for caller.
* nosuid: Permission denied to file.
*/
if (nnp)
return -EPERM;
return -EACCES;
}
static int selinux_bprm_set_creds(struct linux_binprm *bprm)
{
const struct task_security_struct *old_tsec;
struct task_security_struct *new_tsec;
struct inode_security_struct *isec;
struct common_audit_data ad;
struct inode *inode = file_inode(bprm->file);
int rc;
/* SELinux context only depends on initial program or script and not
* the script interpreter */
if (bprm->called_set_creds)
return 0;
old_tsec = current_security();
new_tsec = bprm->cred->security;
isec = inode_security(inode);
/* Default to the current task SID. */
new_tsec->sid = old_tsec->sid;
new_tsec->osid = old_tsec->sid;
/* Reset fs, key, and sock SIDs on execve. */
new_tsec->create_sid = 0;
new_tsec->keycreate_sid = 0;
new_tsec->sockcreate_sid = 0;
if (old_tsec->exec_sid) {
new_tsec->sid = old_tsec->exec_sid;
/* Reset exec SID on execve. */
new_tsec->exec_sid = 0;
/* Fail on NNP or nosuid if not an allowed transition. */
rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
if (rc)
return rc;
} else {
/* Check for a default transition on this program. */
rc = security_transition_sid(&selinux_state, old_tsec->sid,
isec->sid, SECCLASS_PROCESS, NULL,
&new_tsec->sid);
if (rc)
return rc;
/*
* Fallback to old SID on NNP or nosuid if not an allowed
* transition.
*/
rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
if (rc)
new_tsec->sid = old_tsec->sid;
}
ad.type = LSM_AUDIT_DATA_FILE;
ad.u.file = bprm->file;
if (new_tsec->sid == old_tsec->sid) {
rc = avc_has_perm(&selinux_state,
old_tsec->sid, isec->sid,
SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
if (rc)
return rc;
} else {
/* Check permissions for the transition. */
rc = avc_has_perm(&selinux_state,
old_tsec->sid, new_tsec->sid,
SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
if (rc)
return rc;
rc = avc_has_perm(&selinux_state,
new_tsec->sid, isec->sid,
SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
if (rc)
return rc;
/* Check for shared state */
if (bprm->unsafe & LSM_UNSAFE_SHARE) {
rc = avc_has_perm(&selinux_state,
old_tsec->sid, new_tsec->sid,
SECCLASS_PROCESS, PROCESS__SHARE,
NULL);
if (rc)
return -EPERM;
}
/* Make sure that anyone attempting to ptrace over a task that
* changes its SID has the appropriate permit */
if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
u32 ptsid = ptrace_parent_sid();
if (ptsid != 0) {
rc = avc_has_perm(&selinux_state,
ptsid, new_tsec->sid,
SECCLASS_PROCESS,
PROCESS__PTRACE, NULL);
if (rc)
return -EPERM;
}
}
/* Clear any possibly unsafe personality bits on exec: */
bprm->per_clear |= PER_CLEAR_ON_SETID;
/* Enable secure mode for SIDs transitions unless
the noatsecure permission is granted between
the two SIDs, i.e. ahp returns 0. */
rc = avc_has_perm(&selinux_state,
old_tsec->sid, new_tsec->sid,
SECCLASS_PROCESS, PROCESS__NOATSECURE,
NULL);
bprm->secureexec |= !!rc;
}
return 0;
}
static int match_file(const void *p, struct file *file, unsigned fd)
{
return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
}
/* Derived from fs/exec.c:flush_old_files. */
static inline void flush_unauthorized_files(const struct cred *cred,
struct files_struct *files)
{
struct file *file, *devnull = NULL;
struct tty_struct *tty;
int drop_tty = 0;
unsigned n;
tty = get_current_tty();
if (tty) {
spin_lock(&tty->files_lock);
if (!list_empty(&tty->tty_files)) {
struct tty_file_private *file_priv;
/* Revalidate access to controlling tty.
Use file_path_has_perm on the tty path directly
rather than using file_has_perm, as this particular
open file may belong to another process and we are
only interested in the inode-based check here. */
file_priv = list_first_entry(&tty->tty_files,
struct tty_file_private, list);
file = file_priv->file;
if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
drop_tty = 1;
}
spin_unlock(&tty->files_lock);
tty_kref_put(tty);
}
/* Reset controlling tty. */
if (drop_tty)
no_tty();
/* Revalidate access to inherited open files. */
n = iterate_fd(files, 0, match_file, cred);
if (!n) /* none found? */
return;
devnull = dentry_open(&selinux_null, O_RDWR, cred);
if (IS_ERR(devnull))
devnull = NULL;
/* replace all the matching ones with this */
do {
replace_fd(n - 1, devnull, 0);
} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
if (devnull)
fput(devnull);
}
/*
* Prepare a process for imminent new credential changes due to exec
*/
static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
{
struct task_security_struct *new_tsec;
struct rlimit *rlim, *initrlim;
int rc, i;
new_tsec = bprm->cred->security;
if (new_tsec->sid == new_tsec->osid)
return;
/* Close files for which the new task SID is not authorized. */
flush_unauthorized_files(bprm->cred, current->files);
/* Always clear parent death signal on SID transitions. */
current->pdeath_signal = 0;
/* Check whether the new SID can inherit resource limits from the old
* SID. If not, reset all soft limits to the lower of the current
* task's hard limit and the init task's soft limit.
*
* Note that the setting of hard limits (even to lower them) can be
* controlled by the setrlimit check. The inclusion of the init task's
* soft limit into the computation is to avoid resetting soft limits
* higher than the default soft limit for cases where the default is
* lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
*/
rc = avc_has_perm(&selinux_state,
new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
PROCESS__RLIMITINH, NULL);
if (rc) {
/* protect against do_prlimit() */
task_lock(current);
for (i = 0; i < RLIM_NLIMITS; i++) {
rlim = current->signal->rlim + i;
initrlim = init_task.signal->rlim + i;
rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
}
task_unlock(current);
if (IS_ENABLED(CONFIG_POSIX_TIMERS))
update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
}
}
/*
* Clean up the process immediately after the installation of new credentials
* due to exec
*/
static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
{
const struct task_security_struct *tsec = current_security();
struct itimerval itimer;
u32 osid, sid;
int rc, i;
osid = tsec->osid;
sid = tsec->sid;
if (sid == osid)
return;
/* Check whether the new SID can inherit signal state from the old SID.
* If not, clear itimers to avoid subsequent signal generation and
* flush and unblock signals.
*
* This must occur _after_ the task SID has been updated so that any
* kill done after the flush will be checked against the new SID.
*/
rc = avc_has_perm(&selinux_state,
osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
if (rc) {
if (IS_ENABLED(CONFIG_POSIX_TIMERS)) {
memset(&itimer, 0, sizeof itimer);
for (i = 0; i < 3; i++)
do_setitimer(i, &itimer, NULL);
}
spin_lock_irq(&current->sighand->siglock);
if (!fatal_signal_pending(current)) {
flush_sigqueue(&current->pending);
flush_sigqueue(&current->signal->shared_pending);
flush_signal_handlers(current, 1);
sigemptyset(&current->blocked);
recalc_sigpending();
}
spin_unlock_irq(&current->sighand->siglock);
}
/* Wake up the parent if it is waiting so that it can recheck
* wait permission to the new task SID. */
read_lock(&tasklist_lock);
__wake_up_parent(current, current->real_parent);
read_unlock(&tasklist_lock);
}
/* superblock security operations */
static int selinux_sb_alloc_security(struct super_block *sb)
{
return superblock_alloc_security(sb);
}
static void selinux_sb_free_security(struct super_block *sb)
{
superblock_free_security(sb);
}
static inline int match_prefix(char *prefix, int plen, char *option, int olen)
{
if (plen > olen)
return 0;
return !memcmp(prefix, option, plen);
}
static inline int selinux_option(char *option, int len)
{
return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
}
static inline void take_option(char **to, char *from, int *first, int len)
{
if (!*first) {
**to = ',';
*to += 1;
} else
*first = 0;
memcpy(*to, from, len);
*to += len;
}
static inline void take_selinux_option(char **to, char *from, int *first,
int len)
{
int current_size = 0;
if (!*first) {
**to = '|';
*to += 1;
} else
*first = 0;
while (current_size < len) {
if (*from != '"') {
**to = *from;
*to += 1;
}
from += 1;
current_size += 1;
}
}
static int selinux_sb_copy_data(char *orig, char *copy)
{
int fnosec, fsec, rc = 0;
char *in_save, *in_curr, *in_end;
char *sec_curr, *nosec_save, *nosec;
int open_quote = 0;
in_curr = orig;
sec_curr = copy;
nosec = (char *)get_zeroed_page(GFP_KERNEL);
if (!nosec) {
rc = -ENOMEM;
goto out;
}
nosec_save = nosec;
fnosec = fsec = 1;
in_save = in_end = orig;
do {
if (*in_end == '"')
open_quote = !open_quote;
if ((*in_end == ',' && open_quote == 0) ||
*in_end == '\0') {
int len = in_end - in_curr;
if (selinux_option(in_curr, len))
take_selinux_option(&sec_curr, in_curr, &fsec, len);
else
take_option(&nosec, in_curr, &fnosec, len);
in_curr = in_end + 1;
}
} while (*in_end++);
strcpy(in_save, nosec_save);
free_page((unsigned long)nosec_save);
out:
return rc;
}
static int selinux_sb_remount(struct super_block *sb, void *data)
{
int rc, i, *flags;
struct security_mnt_opts opts;
char *secdata, **mount_options;
struct superblock_security_struct *sbsec = sb->s_security;
if (!(sbsec->flags & SE_SBINITIALIZED))
return 0;
if (!data)
return 0;
if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
return 0;
security_init_mnt_opts(&opts);
secdata = alloc_secdata();
if (!secdata)
return -ENOMEM;
rc = selinux_sb_copy_data(data, secdata);
if (rc)
goto out_free_secdata;
rc = selinux_parse_opts_str(secdata, &opts);
if (rc)
goto out_free_secdata;
mount_options = opts.mnt_opts;
flags = opts.mnt_opts_flags;
for (i = 0; i < opts.num_mnt_opts; i++) {
u32 sid;
if (flags[i] == SBLABEL_MNT)
continue;
rc = security_context_str_to_sid(&selinux_state,
mount_options[i], &sid,
GFP_KERNEL);
if (rc) {
pr_warn("SELinux: security_context_str_to_sid"
"(%s) failed for (dev %s, type %s) errno=%d\n",
mount_options[i], sb->s_id, sb->s_type->name, rc);
goto out_free_opts;
}
rc = -EINVAL;
switch (flags[i]) {
case FSCONTEXT_MNT:
if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
goto out_bad_option;
break;
case CONTEXT_MNT:
if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
goto out_bad_option;
break;
case ROOTCONTEXT_MNT: {
struct inode_security_struct *root_isec;
root_isec = backing_inode_security(sb->s_root);
if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
goto out_bad_option;
break;
}
case DEFCONTEXT_MNT:
if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
goto out_bad_option;
break;
default:
goto out_free_opts;
}
}
rc = 0;
out_free_opts:
security_free_mnt_opts(&opts);
out_free_secdata:
free_secdata(secdata);
return rc;
out_bad_option:
pr_warn("SELinux: unable to change security options "
"during remount (dev %s, type=%s)\n", sb->s_id,
sb->s_type->name);
goto out_free_opts;
}
static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
{
const struct cred *cred = current_cred();
struct common_audit_data ad;
int rc;
rc = superblock_doinit(sb, data);
if (rc)
return rc;
/* Allow all mounts performed by the kernel */
if (flags & (MS_KERNMOUNT | MS_SUBMOUNT))
return 0;
ad.type = LSM_AUDIT_DATA_DENTRY;
ad.u.dentry = sb->s_root;
return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
}
static int selinux_sb_statfs(struct dentry *dentry)
{
const struct cred *cred = current_cred();
struct common_audit_data ad;
ad.type = LSM_AUDIT_DATA_DENTRY;
ad.u.dentry = dentry->d_sb->s_root;
return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
}
static int selinux_mount(const char *dev_name,
const struct path *path,
const char *type,
unsigned long flags,
void *data)
{
const struct cred *cred = current_cred();
if (flags & MS_REMOUNT)
return superblock_has_perm(cred, path->dentry->d_sb,
FILESYSTEM__REMOUNT, NULL);
else
return path_has_perm(cred, path, FILE__MOUNTON);
}
static int selinux_umount(struct vfsmount *mnt, int flags)
{
const struct cred *cred = current_cred();
return superblock_has_perm(cred, mnt->mnt_sb,
FILESYSTEM__UNMOUNT, NULL);
}
/* inode security operations */
static int selinux_inode_alloc_security(struct inode *inode)
{
return inode_alloc_security(inode);
}
static void selinux_inode_free_security(struct inode *inode)
{
inode_free_security(inode);
}
static int selinux_dentry_init_security(struct dentry *dentry, int mode,
const struct qstr *name, void **ctx,
u32 *ctxlen)
{
u32 newsid;
int rc;
rc = selinux_determine_inode_label(current_security(),
d_inode(dentry->d_parent), name,
inode_mode_to_security_class(mode),
&newsid);
if (rc)
return rc;
return security_sid_to_context(&selinux_state, newsid, (char **)ctx,
ctxlen);
}
static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
struct qstr *name,
const struct cred *old,
struct cred *new)
{
u32 newsid;
int rc;
struct task_security_struct *tsec;
rc = selinux_determine_inode_label(old->security,
d_inode(dentry->d_parent), name,
inode_mode_to_security_class(mode),
&newsid);
if (rc)
return rc;
tsec = new->security;
tsec->create_sid = newsid;
return 0;
}
static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
const struct qstr *qstr,
const char **name,
void **value, size_t *len)
{
const struct task_security_struct *tsec = current_security();
struct superblock_security_struct *sbsec;
u32 newsid, clen;
int rc;
char *context;
sbsec = dir->i_sb->s_security;
newsid = tsec->create_sid;
rc = selinux_determine_inode_label(current_security(),
dir, qstr,
inode_mode_to_security_class(inode->i_mode),
&newsid);
if (rc)
return rc;
/* Possibly defer initialization to selinux_complete_init. */
if (sbsec->flags & SE_SBINITIALIZED) {
struct inode_security_struct *isec = inode->i_security;
isec->sclass = inode_mode_to_security_class(inode->i_mode);
isec->sid = newsid;
isec->initialized = LABEL_INITIALIZED;
}
if (!selinux_state.initialized || !(sbsec->flags & SBLABEL_MNT))
return -EOPNOTSUPP;
if (name)
*name = XATTR_SELINUX_SUFFIX;
if (value && len) {
rc = security_sid_to_context_force(&selinux_state, newsid,
&context, &clen);
if (rc)
return rc;
*value = context;
*len = clen;
}
return 0;
}
static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
{
return may_create(dir, dentry, SECCLASS_FILE);
}
static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
{
return may_link(dir, old_dentry, MAY_LINK);
}
static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
{
return may_link(dir, dentry, MAY_UNLINK);
}
static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
{
return may_create(dir, dentry, SECCLASS_LNK_FILE);
}
static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
{
return may_create(dir, dentry, SECCLASS_DIR);
}
static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
{
return may_link(dir, dentry, MAY_RMDIR);
}
static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
{
return may_create(dir, dentry, inode_mode_to_security_class(mode));
}
static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
struct inode *new_inode, struct dentry *new_dentry)
{
return may_rename(old_inode, old_dentry, new_inode, new_dentry);
}
static int selinux_inode_readlink(struct dentry *dentry)
{
const struct cred *cred = current_cred();
return dentry_has_perm(cred, dentry, FILE__READ);
}
static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
bool rcu)
{
const struct cred *cred = current_cred();
struct common_audit_data ad;
struct inode_security_struct *isec;
u32 sid;
validate_creds(cred);
ad.type = LSM_AUDIT_DATA_DENTRY;
ad.u.dentry = dentry;
sid = cred_sid(cred);
isec = inode_security_rcu(inode, rcu);
if (IS_ERR(isec))
return PTR_ERR(isec);
return avc_has_perm_flags(&selinux_state,
sid, isec->sid, isec->sclass, FILE__READ, &ad,
rcu ? MAY_NOT_BLOCK : 0);
}
static noinline int audit_inode_permission(struct inode *inode,
u32 perms, u32 audited, u32 denied,
int result)
{
struct common_audit_data ad;
struct inode_security_struct *isec = inode->i_security;
int rc;
ad.type = LSM_AUDIT_DATA_INODE;
ad.u.inode = inode;
rc = slow_avc_audit(&selinux_state,
current_sid(), isec->sid, isec->sclass, perms,
audited, denied, result, &ad);
if (rc)
return rc;
return 0;
}
static int selinux_inode_permission(struct inode *inode, int mask)
{
const struct cred *cred = current_cred();
u32 perms;
bool from_access;
unsigned flags = mask & MAY_NOT_BLOCK;
struct inode_security_struct *isec;
u32 sid;
struct av_decision avd;
int rc, rc2;
u32 audited, denied;
from_access = mask & MAY_ACCESS;
mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
/* No permission to check. Existence test. */
if (!mask)
return 0;
validate_creds(cred);
if (unlikely(IS_PRIVATE(inode)))
return 0;
perms = file_mask_to_av(inode->i_mode, mask);
sid = cred_sid(cred);
isec = inode_security_rcu(inode, flags & MAY_NOT_BLOCK);
if (IS_ERR(isec))
return PTR_ERR(isec);
rc = avc_has_perm_noaudit(&selinux_state,
sid, isec->sid, isec->sclass, perms,
(flags & MAY_NOT_BLOCK) ? AVC_NONBLOCKING : 0,
&avd);
audited = avc_audit_required(perms, &avd, rc,
from_access ? FILE__AUDIT_ACCESS : 0,
&denied);
if (likely(!audited))
return rc;
/* fall back to ref-walk if we have to generate audit */
if (flags & MAY_NOT_BLOCK)
return -ECHILD;
rc2 = audit_inode_permission(inode, perms, audited, denied, rc);
if (rc2)
return rc2;
return rc;
}
static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
{
const struct cred *cred = current_cred();
struct inode *inode = d_backing_inode(dentry);
unsigned int ia_valid = iattr->ia_valid;
__u32 av = FILE__WRITE;
/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
if (ia_valid & ATTR_FORCE) {
ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
ATTR_FORCE);
if (!ia_valid)
return 0;
}
if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
return dentry_has_perm(cred, dentry, FILE__SETATTR);
if (selinux_policycap_openperm() &&
inode->i_sb->s_magic != SOCKFS_MAGIC &&
(ia_valid & ATTR_SIZE) &&
!(ia_valid & ATTR_FILE))
av |= FILE__OPEN;
return dentry_has_perm(cred, dentry, av);
}
static int selinux_inode_getattr(const struct path *path)
{
return path_has_perm(current_cred(), path, FILE__GETATTR);
}
static bool has_cap_mac_admin(bool audit)
{
const struct cred *cred = current_cred();
unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
return false;
if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
return false;
return true;
}
static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
const void *value, size_t size, int flags)
{
struct inode *inode = d_backing_inode(dentry);
struct inode_security_struct *isec;
struct superblock_security_struct *sbsec;
struct common_audit_data ad;
u32 newsid, sid = current_sid();
int rc = 0;
if (strcmp(name, XATTR_NAME_SELINUX)) {
rc = cap_inode_setxattr(dentry, name, value, size, flags);
if (rc)
return rc;
/* Not an attribute we recognize, so just check the
ordinary setattr permission. */
return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
}
if (!selinux_state.initialized)
return (inode_owner_or_capable(inode) ? 0 : -EPERM);
sbsec = inode->i_sb->s_security;
if (!(sbsec->flags & SBLABEL_MNT))
return -EOPNOTSUPP;
if (!inode_owner_or_capable(inode))
return -EPERM;
ad.type = LSM_AUDIT_DATA_DENTRY;
ad.u.dentry = dentry;
isec = backing_inode_security(dentry);
rc = avc_has_perm(&selinux_state,
sid, isec->sid, isec->sclass,
FILE__RELABELFROM, &ad);
if (rc)
return rc;
rc = security_context_to_sid(&selinux_state, value, size, &newsid,
GFP_KERNEL);
if (rc == -EINVAL) {
if (!has_cap_mac_admin(true)) {
struct audit_buffer *ab;
size_t audit_size;
/* We strip a nul only if it is at the end, otherwise the
* context contains a nul and we should audit that */
if (value) {
const char *str = value;
if (str[size - 1] == '\0')
audit_size = size - 1;
else
audit_size = size;
} else {
audit_size = 0;
}
ab = audit_log_start(audit_context(),
GFP_ATOMIC, AUDIT_SELINUX_ERR);
audit_log_format(ab, "op=setxattr invalid_context=");
audit_log_n_untrustedstring(ab, value, audit_size);
audit_log_end(ab);
return rc;
}
rc = security_context_to_sid_force(&selinux_state, value,
size, &newsid);
}
if (rc)
return rc;
rc = avc_has_perm(&selinux_state,
sid, newsid, isec->sclass,
FILE__RELABELTO, &ad);
if (rc)
return rc;
rc = security_validate_transition(&selinux_state, isec->sid, newsid,
sid, isec->sclass);
if (rc)
return rc;
return avc_has_perm(&selinux_state,
newsid,
sbsec->sid,
SECCLASS_FILESYSTEM,
FILESYSTEM__ASSOCIATE,
&ad);
}
static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
const void *value, size_t size,
int flags)
{
struct inode *inode = d_backing_inode(dentry);
struct inode_security_struct *isec;
u32 newsid;
int rc;
if (strcmp(name, XATTR_NAME_SELINUX)) {
/* Not an attribute we recognize, so nothing to do. */
return;
}
if (!selinux_state.initialized) {
/* If we haven't even been initialized, then we can't validate
* against a policy, so leave the label as invalid. It may
* resolve to a valid label on the next revalidation try if
* we've since initialized.
*/
return;
}
rc = security_context_to_sid_force(&selinux_state, value, size,
&newsid);
if (rc) {
pr_err("SELinux: unable to map context to SID"
"for (%s, %lu), rc=%d\n",
inode->i_sb->s_id, inode->i_ino, -rc);
return;
}
isec = backing_inode_security(dentry);
spin_lock(&isec->lock);
isec->sclass = inode_mode_to_security_class(inode->i_mode);
isec->sid = newsid;
isec->initialized = LABEL_INITIALIZED;
spin_unlock(&isec->lock);
return;
}
static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
{
const struct cred *cred = current_cred();
return dentry_has_perm(cred, dentry, FILE__GETATTR);
}
static int selinux_inode_listxattr(struct dentry *dentry)
{
const struct cred *cred = current_cred();
return dentry_has_perm(cred, dentry, FILE__GETATTR);
}
static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
{
if (strcmp(name, XATTR_NAME_SELINUX)) {
int rc = cap_inode_removexattr(dentry, name);
if (rc)
return rc;
/* Not an attribute we recognize, so just check the
ordinary setattr permission. */
return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
}
/* No one is allowed to remove a SELinux security label.
You can change the label, but all data must be labeled. */
return -EACCES;
}
/*
* Copy the inode security context value to the user.
*
* Permission check is handled by selinux_inode_getxattr hook.
*/
static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
{
u32 size;
int error;
char *context = NULL;
struct inode_security_struct *isec;
if (strcmp(name, XATTR_SELINUX_SUFFIX))
return -EOPNOTSUPP;
/*
* If the caller has CAP_MAC_ADMIN, then get the raw context
* value even if it is not defined by current policy; otherwise,
* use the in-core value under current policy.
* Use the non-auditing forms of the permission checks since
* getxattr may be called by unprivileged processes commonly
* and lack of permission just means that we fall back to the
* in-core context value, not a denial.
*/
isec = inode_security(inode);
if (has_cap_mac_admin(false))
error = security_sid_to_context_force(&selinux_state,
isec->sid, &context,
&size);
else
error = security_sid_to_context(&selinux_state, isec->sid,
&context, &size);
if (error)
return error;
error = size;
if (alloc) {
*buffer = context;
goto out_nofree;
}
kfree(context);
out_nofree:
return error;
}
static int selinux_inode_setsecurity(struct inode *inode, const char *name,
const void *value, size_t size, int flags)
{
struct inode_security_struct *isec = inode_security_novalidate(inode);
struct superblock_security_struct *sbsec = inode->i_sb->s_security;
u32 newsid;
int rc;
if (strcmp(name, XATTR_SELINUX_SUFFIX))
return -EOPNOTSUPP;
if (!(sbsec->flags & SBLABEL_MNT))
return -EOPNOTSUPP;
if (!value || !size)
return -EACCES;
rc = security_context_to_sid(&selinux_state, value, size, &newsid,
GFP_KERNEL);
if (rc)
return rc;
spin_lock(&isec->lock);
isec->sclass = inode_mode_to_security_class(inode->i_mode);
isec->sid = newsid;
isec->initialized = LABEL_INITIALIZED;
spin_unlock(&isec->lock);
return 0;
}
static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
{
const int len = sizeof(XATTR_NAME_SELINUX);
if (buffer && len <= buffer_size)
memcpy(buffer, XATTR_NAME_SELINUX, len);
return len;
}
static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
{
struct inode_security_struct *isec = inode_security_novalidate(inode);
*secid = isec->sid;
}
static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
{
u32 sid;
struct task_security_struct *tsec;
struct cred *new_creds = *new;
if (new_creds == NULL) {
new_creds = prepare_creds();
if (!new_creds)
return -ENOMEM;
}
tsec = new_creds->security;
/* Get label from overlay inode and set it in create_sid */
selinux_inode_getsecid(d_inode(src), &sid);
tsec->create_sid = sid;
*new = new_creds;
return 0;
}
static int selinux_inode_copy_up_xattr(const char *name)
{
/* The copy_up hook above sets the initial context on an inode, but we
* don't then want to overwrite it by blindly copying all the lower
* xattrs up. Instead, we have to filter out SELinux-related xattrs.
*/
if (strcmp(name, XATTR_NAME_SELINUX) == 0)
return 1; /* Discard */
/*
* Any other attribute apart from SELINUX is not claimed, supported
* by selinux.
*/
return -EOPNOTSUPP;
}
/* file security operations */
static int selinux_revalidate_file_permission(struct file *file, int mask)
{
const struct cred *cred = current_cred();
struct inode *inode = file_inode(file);
/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
mask |= MAY_APPEND;
return file_has_perm(cred, file,
file_mask_to_av(inode->i_mode, mask));
}
static int selinux_file_permission(struct file *file, int mask)
{
struct inode *inode = file_inode(file);
struct file_security_struct *fsec = file->f_security;
struct inode_security_struct *isec;
u32 sid = current_sid();
if (!mask)
/* No permission to check. Existence test. */
return 0;
isec = inode_security(inode);
if (sid == fsec->sid && fsec->isid == isec->sid &&
fsec->pseqno == avc_policy_seqno(&selinux_state))
/* No change since file_open check. */
return 0;
return selinux_revalidate_file_permission(file, mask);
}
static int selinux_file_alloc_security(struct file *file)
{
return file_alloc_security(file);
}
static void selinux_file_free_security(struct file *file)
{
file_free_security(file);
}
/*
* Check whether a task has the ioctl permission and cmd
* operation to an inode.
*/
static int ioctl_has_perm(const struct cred *cred, struct file *file,
u32 requested, u16 cmd)
{
struct common_audit_data ad;
struct file_security_struct *fsec = file->f_security;
struct inode *inode = file_inode(file);
struct inode_security_struct *isec;
struct lsm_ioctlop_audit ioctl;
u32 ssid = cred_sid(cred);
int rc;
u8 driver = cmd >> 8;
u8 xperm = cmd & 0xff;
ad.type = LSM_AUDIT_DATA_IOCTL_OP;
ad.u.op = &ioctl;
ad.u.op->cmd = cmd;
ad.u.op->path = file->f_path;
if (ssid != fsec->sid) {
rc = avc_has_perm(&selinux_state,
ssid, fsec->sid,
SECCLASS_FD,
FD__USE,
&ad);
if (rc)
goto out;
}
if (unlikely(IS_PRIVATE(inode)))
return 0;
isec = inode_security(inode);
rc = avc_has_extended_perms(&selinux_state,
ssid, isec->sid, isec->sclass,
requested, driver, xperm, &ad);
out:
return rc;
}
static int selinux_file_ioctl(struct file *file, unsigned int cmd,
unsigned long arg)
{
const struct cred *cred = current_cred();
int error = 0;
switch (cmd) {
case FIONREAD:
/* fall through */
case FIBMAP:
/* fall through */
case FIGETBSZ:
/* fall through */
case FS_IOC_GETFLAGS:
/* fall through */
case FS_IOC_GETVERSION:
error = file_has_perm(cred, file, FILE__GETATTR);
break;
case FS_IOC_SETFLAGS:
/* fall through */
case FS_IOC_SETVERSION:
error = file_has_perm(cred, file, FILE__SETATTR);
break;
/* sys_ioctl() checks */
case FIONBIO:
/* fall through */
case FIOASYNC:
error = file_has_perm(cred, file, 0);
break;
case KDSKBENT:
case KDSKBSENT:
error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
CAP_OPT_NONE, true);
break;
/* default case assumes that the command will go
* to the file's ioctl() function.
*/
default:
error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
}
return error;
}
static int default_noexec;
static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
{
const struct cred *cred = current_cred();
u32 sid = cred_sid(cred);
int rc = 0;
if (default_noexec &&
(prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
(!shared && (prot & PROT_WRITE)))) {
/*
* We are making executable an anonymous mapping or a
* private file mapping that will also be writable.
* This has an additional check.
*/
rc = avc_has_perm(&selinux_state,
sid, sid, SECCLASS_PROCESS,
PROCESS__EXECMEM, NULL);
if (rc)
goto error;
}
if (file) {
/* read access is always possible with a mapping */
u32 av = FILE__READ;
/* write access only matters if the mapping is shared */
if (shared && (prot & PROT_WRITE))
av |= FILE__WRITE;
if (prot & PROT_EXEC)
av |= FILE__EXECUTE;
return file_has_perm(cred, file, av);
}
error:
return rc;
}
static int selinux_mmap_addr(unsigned long addr)
{
int rc = 0;
if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
u32 sid = current_sid();
rc = avc_has_perm(&selinux_state,
sid, sid, SECCLASS_MEMPROTECT,
MEMPROTECT__MMAP_ZERO, NULL);
}
return rc;
}
static int selinux_mmap_file(struct file *file, unsigned long reqprot,
unsigned long prot, unsigned long flags)
{
struct common_audit_data ad;
int rc;
if (file) {
ad.type = LSM_AUDIT_DATA_FILE;
ad.u.file = file;
rc = inode_has_perm(current_cred(), file_inode(file),
FILE__MAP, &ad);
if (rc)
return rc;
}
if (selinux_state.checkreqprot)
prot = reqprot;
return file_map_prot_check(file, prot,
(flags & MAP_TYPE) == MAP_SHARED);
}
static int selinux_file_mprotect(struct vm_area_struct *vma,
unsigned long reqprot,
unsigned long prot)
{
const struct cred *cred = current_cred();
u32 sid = cred_sid(cred);
if (selinux_state.checkreqprot)
prot = reqprot;
if (default_noexec &&
(prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
int rc = 0;
if (vma->vm_start >= vma->vm_mm->start_brk &&
vma->vm_end <= vma->vm_mm->brk) {
rc = avc_has_perm(&selinux_state,
sid, sid, SECCLASS_PROCESS,
PROCESS__EXECHEAP, NULL);
} else if (!vma->vm_file &&
((vma->vm_start <= vma->vm_mm->start_stack &&
vma->vm_end >= vma->vm_mm->start_stack) ||
vma_is_stack_for_current(vma))) {
rc = avc_has_perm(&selinux_state,
sid, sid, SECCLASS_PROCESS,
PROCESS__EXECSTACK, NULL);
} else if (vma->vm_file && vma->anon_vma) {
/*
* We are making executable a file mapping that has
* had some COW done. Since pages might have been
* written, check ability to execute the possibly
* modified content. This typically should only
* occur for text relocations.
*/
rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
}
if (rc)
return rc;
}
return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
}
static int selinux_file_lock(struct file *file, unsigned int cmd)
{
const struct cred *cred = current_cred();
return file_has_perm(cred, file, FILE__LOCK);
}
static int selinux_file_fcntl(struct file *file, unsigned int cmd,
unsigned long arg)
{
const struct cred *cred = current_cred();
int err = 0;
switch (cmd) {
case F_SETFL:
if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
err = file_has_perm(cred, file, FILE__WRITE);
break;
}
/* fall through */
case F_SETOWN:
case F_SETSIG:
case F_GETFL:
case F_GETOWN:
case F_GETSIG:
case F_GETOWNER_UIDS:
/* Just check FD__USE permission */
err = file_has_perm(cred, file, 0);
break;
case F_GETLK:
case F_SETLK:
case F_SETLKW:
case F_OFD_GETLK:
case F_OFD_SETLK:
case F_OFD_SETLKW:
#if BITS_PER_LONG == 32
case F_GETLK64:
case F_SETLK64:
case F_SETLKW64:
#endif
err = file_has_perm(cred, file, FILE__LOCK);
break;
}
return err;
}
static void selinux_file_set_fowner(struct file *file)
{
struct file_security_struct *fsec;
fsec = file->f_security;
fsec->fown_sid = current_sid();
}
static int selinux_file_send_sigiotask(struct task_struct *tsk,
struct fown_struct *fown, int signum)
{
struct file *file;
u32 sid = task_sid(tsk);
u32 perm;
struct file_security_struct *fsec;
/* struct fown_struct is never outside the context of a struct file */
file = container_of(fown, struct file, f_owner);
fsec = file->f_security;
if (!signum)
perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
else
perm = signal_to_av(signum);
return avc_has_perm(&selinux_state,
fsec->fown_sid, sid,
SECCLASS_PROCESS, perm, NULL);
}
static int selinux_file_receive(struct file *file)
{
const struct cred *cred = current_cred();
return file_has_perm(cred, file, file_to_av(file));
}
static int selinux_file_open(struct file *file)
{
struct file_security_struct *fsec;
struct inode_security_struct *isec;
fsec = file->f_security;
isec = inode_security(file_inode(file));
/*
* Save inode label and policy sequence number
* at open-time so that selinux_file_permission
* can determine whether revalidation is necessary.
* Task label is already saved in the file security
* struct as its SID.
*/
fsec->isid = isec->sid;
fsec->pseqno = avc_policy_seqno(&selinux_state);
/*
* Since the inode label or policy seqno may have changed
* between the selinux_inode_permission check and the saving
* of state above, recheck that access is still permitted.
* Otherwise, access might never be revalidated against the
* new inode label or new policy.
* This check is not redundant - do not remove.
*/
return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
}
/* task security operations */
static int selinux_task_alloc(struct task_struct *task,
unsigned long clone_flags)
{
u32 sid = current_sid();
return avc_has_perm(&selinux_state,
sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
}
/*
* allocate the SELinux part of blank credentials
*/
static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
{
struct task_security_struct *tsec;
tsec = kzalloc(sizeof(struct task_security_struct), gfp);
if (!tsec)
return -ENOMEM;
cred->security = tsec;
return 0;
}
/*
* detach and free the LSM part of a set of credentials
*/
static void selinux_cred_free(struct cred *cred)
{
struct task_security_struct *tsec = cred->security;
/*
* cred->security == NULL if security_cred_alloc_blank() or
* security_prepare_creds() returned an error.
*/
BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
cred->security = (void *) 0x7UL;
kfree(tsec);
}
/*
* prepare a new set of credentials for modification
*/
static int selinux_cred_prepare(struct cred *new, const struct cred *old,
gfp_t gfp)
{
const struct task_security_struct *old_tsec;
struct task_security_struct *tsec;
old_tsec = old->security;
tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
if (!tsec)
return -ENOMEM;
new->security = tsec;
return 0;
}
/*
* transfer the SELinux data to a blank set of creds
*/
static void selinux_cred_transfer(struct cred *new, const struct cred *old)
{
const struct task_security_struct *old_tsec = old->security;
struct task_security_struct *tsec = new->security;
*tsec = *old_tsec;
}
static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
{
*secid = cred_sid(c);
}
/*
* set the security data for a kernel service
* - all the creation contexts are set to unlabelled
*/
static int selinux_kernel_act_as(struct cred *new, u32 secid)
{
struct task_security_struct *tsec = new->security;
u32 sid = current_sid();
int ret;
ret = avc_has_perm(&selinux_state,
sid, secid,
SECCLASS_KERNEL_SERVICE,
KERNEL_SERVICE__USE_AS_OVERRIDE,
NULL);
if (ret == 0) {
tsec->sid = secid;
tsec->create_sid = 0;
tsec->keycreate_sid = 0;
tsec->sockcreate_sid = 0;
}
return ret;
}
/*
* set the file creation context in a security record to the same as the
* objective context of the specified inode
*/
static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
{
struct inode_security_struct *isec = inode_security(inode);
struct task_security_struct *tsec = new->security;
u32 sid = current_sid();
int ret;
ret = avc_has_perm(&selinux_state,
sid, isec->sid,
SECCLASS_KERNEL_SERVICE,
KERNEL_SERVICE__CREATE_FILES_AS,
NULL);
if (ret == 0)
tsec->create_sid = isec->sid;
return ret;
}
static int selinux_kernel_module_request(char *kmod_name)
{
struct common_audit_data ad;
ad.type = LSM_AUDIT_DATA_KMOD;
ad.u.kmod_name = kmod_name;
return avc_has_perm(&selinux_state,
current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
SYSTEM__MODULE_REQUEST, &ad);
}
static int selinux_kernel_module_from_file(struct file *file)
{
struct common_audit_data ad;
struct inode_security_struct *isec;
struct file_security_struct *fsec;
u32 sid = current_sid();
int rc;
/* init_module */
if (file == NULL)
return avc_has_perm(&selinux_state,
sid, sid, SECCLASS_SYSTEM,
SYSTEM__MODULE_LOAD, NULL);
/* finit_module */
ad.type = LSM_AUDIT_DATA_FILE;
ad.u.file = file;
fsec = file->f_security;
if (sid != fsec->sid) {
rc = avc_has_perm(&selinux_state,
sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
if (rc)
return rc;
}
isec = inode_security(file_inode(file));
return avc_has_perm(&selinux_state,
sid, isec->sid, SECCLASS_SYSTEM,
SYSTEM__MODULE_LOAD, &ad);
}
static int selinux_kernel_read_file(struct file *file,
enum kernel_read_file_id id)
{
int rc = 0;
switch (id) {
case READING_MODULE:
rc = selinux_kernel_module_from_file(file);
break;
default:
break;
}
return rc;
}
static int selinux_kernel_load_data(enum kernel_load_data_id id)
{
int rc = 0;
switch (id) {
case LOADING_MODULE:
rc = selinux_kernel_module_from_file(NULL);
default:
break;
}
return rc;
}
static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
{
return avc_has_perm(&selinux_state,
current_sid(), task_sid(p), SECCLASS_PROCESS,
PROCESS__SETPGID, NULL);
}
static int selinux_task_getpgid(struct task_struct *p)
{
return avc_has_perm(&selinux_state,
current_sid(), task_sid(p), SECCLASS_PROCESS,
PROCESS__GETPGID, NULL);
}
static int selinux_task_getsid(struct task_struct *p)
{
return avc_has_perm(&selinux_state,
current_sid(), task_sid(p), SECCLASS_PROCESS,
PROCESS__GETSESSION, NULL);
}
static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
{
*secid = task_sid(p);
}
static int selinux_task_setnice(struct task_struct *p, int nice)
{
return avc_has_perm(&selinux_state,
current_sid(), task_sid(p), SECCLASS_PROCESS,
PROCESS__SETSCHED, NULL);
}
static int selinux_task_setioprio(struct task_struct *p, int ioprio)
{
return avc_has_perm(&selinux_state,
current_sid(), task_sid(p), SECCLASS_PROCESS,
PROCESS__SETSCHED, NULL);
}
static int selinux_task_getioprio(struct task_struct *p)
{
return avc_has_perm(&selinux_state,
current_sid(), task_sid(p), SECCLASS_PROCESS,
PROCESS__GETSCHED, NULL);
}
static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
unsigned int flags)
{
u32 av = 0;
if (!flags)
return 0;
if (flags & LSM_PRLIMIT_WRITE)
av |= PROCESS__SETRLIMIT;
if (flags & LSM_PRLIMIT_READ)
av |= PROCESS__GETRLIMIT;
return avc_has_perm(&selinux_state,
cred_sid(cred), cred_sid(tcred),
SECCLASS_PROCESS, av, NULL);
}
static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
struct rlimit *new_rlim)
{
struct rlimit *old_rlim = p->signal->rlim + resource;
/* Control the ability to change the hard limit (whether
lowering or raising it), so that the hard limit can
later be used as a safe reset point for the soft limit
upon context transitions. See selinux_bprm_committing_creds. */
if (old_rlim->rlim_max != new_rlim->rlim_max)
return avc_has_perm(&selinux_state,
current_sid(), task_sid(p),
SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
return 0;
}
static int selinux_task_setscheduler(struct task_struct *p)
{
return avc_has_perm(&selinux_state,
current_sid(), task_sid(p), SECCLASS_PROCESS,
PROCESS__SETSCHED, NULL);
}
static int selinux_task_getscheduler(struct task_struct *p)
{
return avc_has_perm(&selinux_state,
current_sid(), task_sid(p), SECCLASS_PROCESS,
PROCESS__GETSCHED, NULL);
}
static int selinux_task_movememory(struct task_struct *p)
{
return avc_has_perm(&selinux_state,
current_sid(), task_sid(p), SECCLASS_PROCESS,
PROCESS__SETSCHED, NULL);
}
static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
int sig, const struct cred *cred)
{
u32 secid;
u32 perm;
if (!sig)
perm = PROCESS__SIGNULL; /* null signal; existence test */
else
perm = signal_to_av(sig);
if (!cred)
secid = current_sid();
else
secid = cred_sid(cred);
return avc_has_perm(&selinux_state,
secid, task_sid(p), SECCLASS_PROCESS, perm, NULL);
}
static void selinux_task_to_inode(struct task_struct *p,
struct inode *inode)
{
struct inode_security_struct *isec = inode->i_security;
u32 sid = task_sid(p);
spin_lock(&isec->lock);
isec->sclass = inode_mode_to_security_class(inode->i_mode);
isec->sid = sid;
isec->initialized = LABEL_INITIALIZED;
spin_unlock(&isec->lock);
}
/* Returns error only if unable to parse addresses */
static int selinux_parse_skb_ipv4(struct sk_buff *skb,
struct common_audit_data *ad, u8 *proto)
{
int offset, ihlen, ret = -EINVAL;
struct iphdr _iph, *ih;
offset = skb_network_offset(skb);
ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
if (ih == NULL)
goto out;
ihlen = ih->ihl * 4;
if (ihlen < sizeof(_iph))
goto out;
ad->u.net->v4info.saddr = ih->saddr;
ad->u.net->v4info.daddr = ih->daddr;
ret = 0;
if (proto)
*proto = ih->protocol;
switch (ih->protocol) {
case IPPROTO_TCP: {
struct tcphdr _tcph, *th;
if (ntohs(ih->frag_off) & IP_OFFSET)
break;
offset += ihlen;
th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
if (th == NULL)
break;
ad->u.net->sport = th->source;
ad->u.net->dport = th->dest;
break;
}
case IPPROTO_UDP: {
struct udphdr _udph, *uh;
if (ntohs(ih->frag_off) & IP_OFFSET)
break;
offset += ihlen;
uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
if (uh == NULL)
break;
ad->u.net->sport = uh->source;
ad->u.net->dport = uh->dest;
break;
}
case IPPROTO_DCCP: {
struct dccp_hdr _dccph, *dh;
if (ntohs(ih->frag_off) & IP_OFFSET)
break;
offset += ihlen;
dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
if (dh == NULL)
break;
ad->u.net->sport = dh->dccph_sport;
ad->u.net->dport = dh->dccph_dport;
break;
}
#if IS_ENABLED(CONFIG_IP_SCTP)
case IPPROTO_SCTP: {
struct sctphdr _sctph, *sh;
if (ntohs(ih->frag_off) & IP_OFFSET)
break;
offset += ihlen;
sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
if (sh == NULL)
break;
ad->u.net->sport = sh->source;
ad->u.net->dport = sh->dest;
break;
}
#endif
default:
break;
}
out:
return ret;
}
#if IS_ENABLED(CONFIG_IPV6)
/* Returns error only if unable to parse addresses */
static int selinux_parse_skb_ipv6(struct sk_buff *skb,
struct common_audit_data *ad, u8 *proto)
{
u8 nexthdr;
int ret = -EINVAL, offset;
struct ipv6hdr _ipv6h, *ip6;
__be16 frag_off;
offset = skb_network_offset(skb);
ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
if (ip6 == NULL)
goto out;
ad->u.net->v6info.saddr = ip6->saddr;
ad->u.net->v6info.daddr = ip6->daddr;
ret = 0;
nexthdr = ip6->nexthdr;
offset += sizeof(_ipv6h);
offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
if (offset < 0)
goto out;
if (proto)
*proto = nexthdr;
switch (nexthdr) {
case IPPROTO_TCP: {
struct tcphdr _tcph, *th;
th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
if (th == NULL)
break;
ad->u.net->sport = th->source;
ad->u.net->dport = th->dest;
break;
}
case IPPROTO_UDP: {
struct udphdr _udph, *uh;
uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
if (uh == NULL)
break;
ad->u.net->sport = uh->source;
ad->u.net->dport = uh->dest;
break;
}
case IPPROTO_DCCP: {
struct dccp_hdr _dccph, *dh;
dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
if (dh == NULL)
break;
ad->u.net->sport = dh->dccph_sport;
ad->u.net->dport = dh->dccph_dport;
break;
}
#if IS_ENABLED(CONFIG_IP_SCTP)
case IPPROTO_SCTP: {
struct sctphdr _sctph, *sh;
sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
if (sh == NULL)
break;
ad->u.net->sport = sh->source;
ad->u.net->dport = sh->dest;
break;
}
#endif
/* includes fragments */
default:
break;
}
out:
return ret;
}
#endif /* IPV6 */
static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
char **_addrp, int src, u8 *proto)
{
char *addrp;
int ret;
switch (ad->u.net->family) {
case PF_INET:
ret = selinux_parse_skb_ipv4(skb, ad, proto);
if (ret)
goto parse_error;
addrp = (char *)(src ? &ad->u.net->v4info.saddr :
&ad->u.net->v4info.daddr);
goto okay;
#if IS_ENABLED(CONFIG_IPV6)
case PF_INET6:
ret = selinux_parse_skb_ipv6(skb, ad, proto);
if (ret)
goto parse_error;
addrp = (char *)(src ? &ad->u.net->v6info.saddr :
&ad->u.net->v6info.daddr);
goto okay;
#endif /* IPV6 */
default:
addrp = NULL;
goto okay;
}
parse_error:
pr_warn(
"SELinux: failure in selinux_parse_skb(),"
" unable to parse packet\n");
return ret;
okay:
if (_addrp)
*_addrp = addrp;
return 0;
}
/**
* selinux_skb_peerlbl_sid - Determine the peer label of a packet
* @skb: the packet
* @family: protocol family
* @sid: the packet's peer label SID
*
* Description:
* Check the various different forms of network peer labeling and determine
* the peer label/SID for the packet; most of the magic actually occurs in
* the security server function security_net_peersid_cmp(). The function
* returns zero if the value in @sid is valid (although it may be SECSID_NULL)
* or -EACCES if @sid is invalid due to inconsistencies with the different
* peer labels.
*
*/
static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
{
int err;
u32 xfrm_sid;
u32 nlbl_sid;
u32 nlbl_type;
err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
if (unlikely(err))
return -EACCES;
err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
if (unlikely(err))
return -EACCES;
err = security_net_peersid_resolve(&selinux_state, nlbl_sid,
nlbl_type, xfrm_sid, sid);
if (unlikely(err)) {
pr_warn(
"SELinux: failure in selinux_skb_peerlbl_sid(),"
" unable to determine packet's peer label\n");
return -EACCES;
}
return 0;
}
/**
* selinux_conn_sid - Determine the child socket label for a connection
* @sk_sid: the parent socket's SID
* @skb_sid: the packet's SID
* @conn_sid: the resulting connection SID
*
* If @skb_sid is valid then the user:role:type information from @sk_sid is
* combined with the MLS information from @skb_sid in order to create
* @conn_sid. If @skb_sid is not valid then then @conn_sid is simply a copy
* of @sk_sid. Returns zero on success, negative values on failure.
*
*/
static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
{
int err = 0;
if (skb_sid != SECSID_NULL)
err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid,
conn_sid);
else
*conn_sid = sk_sid;
return err;
}
/* socket security operations */
static int socket_sockcreate_sid(const struct task_security_struct *tsec,
u16 secclass, u32 *socksid)
{
if (tsec->sockcreate_sid > SECSID_NULL) {
*socksid = tsec->sockcreate_sid;
return 0;
}
return security_transition_sid(&selinux_state, tsec->sid, tsec->sid,
secclass, NULL, socksid);
}
static int sock_has_perm(struct sock *sk, u32 perms)
{
struct sk_security_struct *sksec = sk->sk_security;
struct common_audit_data ad;
struct lsm_network_audit net = {0,};
if (sksec->sid == SECINITSID_KERNEL)
return 0;
ad.type = LSM_AUDIT_DATA_NET;
ad.u.net = &net;
ad.u.net->sk = sk;
return avc_has_perm(&selinux_state,
current_sid(), sksec->sid, sksec->sclass, perms,
&ad);
}
static int selinux_socket_create(int family, int type,
int protocol, int kern)
{
const struct task_security_struct *tsec = current_security();
u32 newsid;
u16 secclass;
int rc;
if (kern)
return 0;
secclass = socket_type_to_security_class(family, type, protocol);
rc = socket_sockcreate_sid(tsec, secclass, &newsid);
if (rc)
return rc;
return avc_has_perm(&selinux_state,
tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
}
static int selinux_socket_post_create(struct socket *sock, int family,
int type, int protocol, int kern)
{
const struct task_security_struct *tsec = current_security();
struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
struct sk_security_struct *sksec;
u16 sclass = socket_type_to_security_class(family, type, protocol);
u32 sid = SECINITSID_KERNEL;
int err = 0;
if (!kern) {
err = socket_sockcreate_sid(tsec, sclass, &sid);
if (err)
return err;
}
isec->sclass = sclass;
isec->sid = sid;
isec->initialized = LABEL_INITIALIZED;
if (sock->sk) {
sksec = sock->sk->sk_security;
sksec->sclass = sclass;
sksec->sid = sid;
/* Allows detection of the first association on this socket */
if (sksec->sclass == SECCLASS_SCTP_SOCKET)
sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
err = selinux_netlbl_socket_post_create(sock->sk, family);
}
return err;
}
static int selinux_socket_socketpair(struct socket *socka,
struct socket *sockb)
{
struct sk_security_struct *sksec_a = socka->sk->sk_security;
struct sk_security_struct *sksec_b = sockb->sk->sk_security;
sksec_a->peer_sid = sksec_b->sid;
sksec_b->peer_sid = sksec_a->sid;
return 0;
}
/* Range of port numbers used to automatically bind.
Need to determine whether we should perform a name_bind
permission check between the socket and the port number. */
static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
{
struct sock *sk = sock->sk;
struct sk_security_struct *sksec = sk->sk_security;
u16 family;
int err;
err = sock_has_perm(sk, SOCKET__BIND);
if (err)
goto out;
/* If PF_INET or PF_INET6, check name_bind permission for the port. */
family = sk->sk_family;
if (family == PF_INET || family == PF_INET6) {
char *addrp;
struct common_audit_data ad;
struct lsm_network_audit net = {0,};
struct sockaddr_in *addr4 = NULL;
struct sockaddr_in6 *addr6 = NULL;
u16 family_sa = address->sa_family;
unsigned short snum;
u32 sid, node_perm;
/*
* sctp_bindx(3) calls via selinux_sctp_bind_connect()
* that validates multiple binding addresses. Because of this
* need to check address->sa_family as it is possible to have
* sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
*/
switch (family_sa) {
case AF_UNSPEC:
case AF_INET:
if (addrlen < sizeof(struct sockaddr_in))
return -EINVAL;
addr4 = (struct sockaddr_in *)address;
if (family_sa == AF_UNSPEC) {
/* see __inet_bind(), we only want to allow
* AF_UNSPEC if the address is INADDR_ANY
*/
if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
goto err_af;
family_sa = AF_INET;
}
snum = ntohs(addr4->sin_port);
addrp = (char *)&addr4->sin_addr.s_addr;
break;
case AF_INET6:
if (addrlen < SIN6_LEN_RFC2133)
return -EINVAL;
addr6 = (struct sockaddr_in6 *)address;
snum = ntohs(addr6->sin6_port);
addrp = (char *)&addr6->sin6_addr.s6_addr;
break;
default:
goto err_af;
}
ad.type = LSM_AUDIT_DATA_NET;
ad.u.net = &net;
ad.u.net->sport = htons(snum);
ad.u.net->family = family_sa;
if (snum) {
int low, high;
inet_get_local_port_range(sock_net(sk), &low, &high);
if (snum < max(inet_prot_sock(sock_net(sk)), low) ||
snum > high) {
err = sel_netport_sid(sk->sk_protocol,
snum, &sid);
if (err)
goto out;
err = avc_has_perm(&selinux_state,
sksec->sid, sid,
sksec->sclass,
SOCKET__NAME_BIND, &ad);
if (err)
goto out;
}
}
switch (sksec->sclass) {
case SECCLASS_TCP_SOCKET:
node_perm = TCP_SOCKET__NODE_BIND;
break;
case SECCLASS_UDP_SOCKET:
node_perm = UDP_SOCKET__NODE_BIND;
break;
case SECCLASS_DCCP_SOCKET:
node_perm = DCCP_SOCKET__NODE_BIND;
break;
case SECCLASS_SCTP_SOCKET:
node_perm = SCTP_SOCKET__NODE_BIND;
break;
default:
node_perm = RAWIP_SOCKET__NODE_BIND;
break;
}
err = sel_netnode_sid(addrp, family_sa, &sid);
if (err)
goto out;
if (family_sa == AF_INET)
ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
else
ad.u.net->v6info.saddr = addr6->sin6_addr;
err = avc_has_perm(&selinux_state,
sksec->sid, sid,
sksec->sclass, node_perm, &ad);
if (err)
goto out;
}
out:
return err;
err_af:
/* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
if (sksec->sclass == SECCLASS_SCTP_SOCKET)
return -EINVAL;
return -EAFNOSUPPORT;
}
/* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
* and sctp_sendmsg(3) as described in Documentation/security/LSM-sctp.rst
*/
static int selinux_socket_connect_helper(struct socket *sock,
struct sockaddr *address, int addrlen)
{
struct sock *sk = sock->sk;
struct sk_security_struct *sksec = sk->sk_security;
int err;
err = sock_has_perm(sk, SOCKET__CONNECT);
if (err)
return err;
/*
* If a TCP, DCCP or SCTP socket, check name_connect permission
* for the port.
*/
if (sksec->sclass == SECCLASS_TCP_SOCKET ||
sksec->sclass == SECCLASS_DCCP_SOCKET ||
sksec->sclass == SECCLASS_SCTP_SOCKET) {
struct common_audit_data ad;
struct lsm_network_audit net = {0,};
struct sockaddr_in *addr4 = NULL;
struct sockaddr_in6 *addr6 = NULL;
unsigned short snum = 0;
u32 sid, perm;
/* sctp_connectx(3) calls via selinux_sctp_bind_connect()
* that validates multiple connect addresses. Because of this
* need to check address->sa_family as it is possible to have
* sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
*/
switch (address->sa_family) {
case AF_INET:
addr4 = (struct sockaddr_in *)address;
if (addrlen < sizeof(struct sockaddr_in))
return -EINVAL;
snum = ntohs(addr4->sin_port);
break;
case AF_INET6:
addr6 = (struct sockaddr_in6 *)address;
if (addrlen < SIN6_LEN_RFC2133)
return -EINVAL;
snum = ntohs(addr6->sin6_port);
break;
default:
/* Note that SCTP services expect -EINVAL, whereas
* others must handle this at the protocol level:
* connect(AF_UNSPEC) on a connected socket is
* a documented way disconnect the socket.
*/
if (sksec->sclass == SECCLASS_SCTP_SOCKET)
return -EINVAL;
}
err = sel_netport_sid(sk->sk_protocol, snum, &sid);
if (err)
return err;
switch (sksec->sclass) {
case SECCLASS_TCP_SOCKET:
perm = TCP_SOCKET__NAME_CONNECT;
break;
case SECCLASS_DCCP_SOCKET:
perm = DCCP_SOCKET__NAME_CONNECT;
break;
case SECCLASS_SCTP_SOCKET:
perm = SCTP_SOCKET__NAME_CONNECT;
break;
}
ad.type = LSM_AUDIT_DATA_NET;
ad.u.net = &net;
ad.u.net->dport = htons(snum);
ad.u.net->family = address->sa_family;
err = avc_has_perm(&selinux_state,
sksec->sid, sid, sksec->sclass, perm, &ad);
if (err)
return err;
}
return 0;
}
/* Supports connect(2), see comments in selinux_socket_connect_helper() */
static int selinux_socket_connect(struct socket *sock,
struct sockaddr *address, int addrlen)
{
int err;
struct sock *sk = sock->sk;
err = selinux_socket_connect_helper(sock, address, addrlen);
if (err)
return err;
return selinux_netlbl_socket_connect(sk, address);
}
static int selinux_socket_listen(struct socket *sock, int backlog)
{
return sock_has_perm(sock->sk, SOCKET__LISTEN);
}
static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
{
int err;
struct inode_security_struct *isec;
struct inode_security_struct *newisec;
u16 sclass;
u32 sid;
err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
if (err)
return err;
isec = inode_security_novalidate(SOCK_INODE(sock));
spin_lock(&isec->lock);
sclass = isec->sclass;
sid = isec->sid;
spin_unlock(&isec->lock);
newisec = inode_security_novalidate(SOCK_INODE(newsock));
newisec->sclass = sclass;
newisec->sid = sid;
newisec->initialized = LABEL_INITIALIZED;
return 0;
}
static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
int size)
{
return sock_has_perm(sock->sk, SOCKET__WRITE);
}
static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
int size, int flags)
{
return sock_has_perm(sock->sk, SOCKET__READ);
}
static int selinux_socket_getsockname(struct socket *sock)
{
return sock_has_perm(sock->sk, SOCKET__GETATTR);
}
static int selinux_socket_getpeername(struct socket *sock)
{
return sock_has_perm(sock->sk, SOCKET__GETATTR);
}
static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
{
int err;
err = sock_has_perm(sock->sk, SOCKET__SETOPT);
if (err)
return err;
return selinux_netlbl_socket_setsockopt(sock, level, optname);
}
static int selinux_socket_getsockopt(struct socket *sock, int level,
int optname)
{
return sock_has_perm(sock->sk, SOCKET__GETOPT);
}
static int selinux_socket_shutdown(struct socket *sock, int how)
{
return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
}
static int selinux_socket_unix_stream_connect(struct sock *sock,
struct sock *other,
struct sock *newsk)
{
struct sk_security_struct *sksec_sock = sock->sk_security;
struct sk_security_struct *sksec_other = other->sk_security;
struct sk_security_struct *sksec_new = newsk->sk_security;
struct common_audit_data ad;
struct lsm_network_audit net = {0,};
int err;
ad.type = LSM_AUDIT_DATA_NET;
ad.u.net = &net;
ad.u.net->sk = other;
err = avc_has_perm(&selinux_state,
sksec_sock->sid, sksec_other->sid,
sksec_other->sclass,
UNIX_STREAM_SOCKET__CONNECTTO, &ad);
if (err)
return err;
/* server child socket */
sksec_new->peer_sid = sksec_sock->sid;
err = security_sid_mls_copy(&selinux_state, sksec_other->sid,
sksec_sock->sid, &sksec_new->sid);
if (err)
return err;
/* connecting socket */
sksec_sock->peer_sid = sksec_new->sid;
return 0;
}
static int selinux_socket_unix_may_send(struct socket *sock,
struct socket *other)
{
struct sk_security_struct *ssec = sock->sk->sk_security;
struct sk_security_struct *osec = other->sk->sk_security;
struct common_audit_data ad;
struct lsm_network_audit net = {0,};
ad.type = LSM_AUDIT_DATA_NET;
ad.u.net = &net;
ad.u.net->sk = other->sk;
return avc_has_perm(&selinux_state,
ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
&ad);
}
static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
char *addrp, u16 family, u32 peer_sid,
struct common_audit_data *ad)
{
int err;
u32 if_sid;
u32 node_sid;
err = sel_netif_sid(ns, ifindex, &if_sid);
if (err)
return err;
err = avc_has_perm(&selinux_state,
peer_sid, if_sid,
SECCLASS_NETIF, NETIF__INGRESS, ad);
if (err)
return err;
err = sel_netnode_sid(addrp, family, &node_sid);
if (err)
return err;
return avc_has_perm(&selinux_state,
peer_sid, node_sid,
SECCLASS_NODE, NODE__RECVFROM, ad);
}
static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
u16 family)
{
int err = 0;
struct sk_security_struct *sksec = sk->sk_security;
u32 sk_sid = sksec->sid;
struct common_audit_data ad;
struct lsm_network_audit net = {0,};
char *addrp;
ad.type = LSM_AUDIT_DATA_NET;
ad.u.net = &net;
ad.u.net->netif = skb->skb_iif;
ad.u.net->family = family;
err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
if (err)
return err;
if (selinux_secmark_enabled()) {
err = avc_has_perm(&selinux_state,
sk_sid, skb->secmark, SECCLASS_PACKET,
PACKET__RECV, &ad);
if (err)
return err;
}
err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
if (err)
return err;
err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
return err;
}
static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
{
int err;
struct sk_security_struct *sksec = sk->sk_security;
u16 family = sk->sk_family;
u32 sk_sid = sksec->sid;
struct common_audit_data ad;
struct lsm_network_audit net = {0,};
char *addrp;
u8 secmark_active;
u8 peerlbl_active;
if (family != PF_INET && family != PF_INET6)
return 0;
/* Handle mapped IPv4 packets arriving via IPv6 sockets */
if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
family = PF_INET;
/* If any sort of compatibility mode is enabled then handoff processing
* to the selinux_sock_rcv_skb_compat() function to deal with the
* special handling. We do this in an attempt to keep this function
* as fast and as clean as possible. */
if (!selinux_policycap_netpeer())
return selinux_sock_rcv_skb_compat(sk, skb, family);
secmark_active = selinux_secmark_enabled();
peerlbl_active = selinux_peerlbl_enabled();
if (!secmark_active && !peerlbl_active)
return 0;
ad.type = LSM_AUDIT_DATA_NET;
ad.u.net = &net;
ad.u.net->netif = skb->skb_iif;
ad.u.net->family = family;
err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
if (err)
return err;
if (peerlbl_active) {
u32 peer_sid;
err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
if (err)
return err;
err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
addrp, family, peer_sid, &ad);
if (err) {
selinux_netlbl_err(skb, family, err, 0);
return err;
}
err = avc_has_perm(&selinux_state,
sk_sid, peer_sid, SECCLASS_PEER,
PEER__RECV, &ad);
if (err) {
selinux_netlbl_err(skb, family, err, 0);
return err;
}
}
if (secmark_active) {
err = avc_has_perm(&selinux_state,
sk_sid, skb->secmark, SECCLASS_PACKET,
PACKET__RECV, &ad);
if (err)
return err;
}
return err;
}
static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
int __user *optlen, unsigned len)
{
int err = 0;
char *scontext;
u32 scontext_len;
struct sk_security_struct *sksec = sock->sk->sk_security;
u32 peer_sid = SECSID_NULL;
if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
sksec->sclass == SECCLASS_TCP_SOCKET ||
sksec->sclass == SECCLASS_SCTP_SOCKET)
peer_sid = sksec->peer_sid;
if (peer_sid == SECSID_NULL)
return -ENOPROTOOPT;
err = security_sid_to_context(&selinux_state, peer_sid, &scontext,
&scontext_len);
if (err)
return err;
if (scontext_len > len) {
err = -ERANGE;
goto out_len;
}
if (copy_to_user(optval, scontext, scontext_len))
err = -EFAULT;
out_len:
if (put_user(scontext_len, optlen))
err = -EFAULT;
kfree(scontext);
return err;
}
static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
{
u32 peer_secid = SECSID_NULL;
u16 family;
struct inode_security_struct *isec;
if (skb && skb->protocol == htons(ETH_P_IP))
family = PF_INET;
else if (skb && skb->protocol == htons(ETH_P_IPV6))
family = PF_INET6;
else if (sock)
family = sock->sk->sk_family;
else
goto out;
if (sock && family == PF_UNIX) {
isec = inode_security_novalidate(SOCK_INODE(sock));
peer_secid = isec->sid;
} else if (skb)
selinux_skb_peerlbl_sid(skb, family, &peer_secid);
out:
*secid = peer_secid;
if (peer_secid == SECSID_NULL)
return -EINVAL;
return 0;
}
static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
{
struct sk_security_struct *sksec;
sksec = kzalloc(sizeof(*sksec), priority);
if (!sksec)
return -ENOMEM;
sksec->peer_sid = SECINITSID_UNLABELED;
sksec->sid = SECINITSID_UNLABELED;
sksec->sclass = SECCLASS_SOCKET;
selinux_netlbl_sk_security_reset(sksec);
sk->sk_security = sksec;
return 0;
}
static void selinux_sk_free_security(struct sock *sk)
{
struct sk_security_struct *sksec = sk->sk_security;
sk->sk_security = NULL;
selinux_netlbl_sk_security_free(sksec);
kfree(sksec);
}
static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
{
struct sk_security_struct *sksec = sk->sk_security;
struct sk_security_struct *newsksec = newsk->sk_security;
newsksec->sid = sksec->sid;
newsksec->peer_sid = sksec->peer_sid;
newsksec->sclass = sksec->sclass;
selinux_netlbl_sk_security_reset(newsksec);
}
static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
{
if (!sk)
*secid = SECINITSID_ANY_SOCKET;
else {
struct sk_security_struct *sksec = sk->sk_security;
*secid = sksec->sid;
}
}
static void selinux_sock_graft(struct sock *sk, struct socket *parent)
{
struct inode_security_struct *isec =
inode_security_novalidate(SOCK_INODE(parent));
struct sk_security_struct *sksec = sk->sk_security;
if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
sk->sk_family == PF_UNIX)
isec->sid = sksec->sid;
sksec->sclass = isec->sclass;
}
/* Called whenever SCTP receives an INIT chunk. This happens when an incoming
* connect(2), sctp_connectx(3) or sctp_sendmsg(3) (with no association
* already present).
*/
static int selinux_sctp_assoc_request(struct sctp_endpoint *ep,
struct sk_buff *skb)
{
struct sk_security_struct *sksec = ep->base.sk->sk_security;
struct common_audit_data ad;
struct lsm_network_audit net = {0,};
u8 peerlbl_active;
u32 peer_sid = SECINITSID_UNLABELED;
u32 conn_sid;
int err = 0;
if (!selinux_policycap_extsockclass())
return 0;
peerlbl_active = selinux_peerlbl_enabled();
if (peerlbl_active) {
/* This will return peer_sid = SECSID_NULL if there are
* no peer labels, see security_net_peersid_resolve().
*/
err = selinux_skb_peerlbl_sid(skb, ep->base.sk->sk_family,
&peer_sid);
if (err)
return err;
if (peer_sid == SECSID_NULL)
peer_sid = SECINITSID_UNLABELED;
}
if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
sksec->sctp_assoc_state = SCTP_ASSOC_SET;
/* Here as first association on socket. As the peer SID
* was allowed by peer recv (and the netif/node checks),
* then it is approved by policy and used as the primary
* peer SID for getpeercon(3).
*/
sksec->peer_sid = peer_sid;
} else if (sksec->peer_sid != peer_sid) {
/* Other association peer SIDs are checked to enforce
* consistency among the peer SIDs.
*/
ad.type = LSM_AUDIT_DATA_NET;
ad.u.net = &net;
ad.u.net->sk = ep->base.sk;
err = avc_has_perm(&selinux_state,
sksec->peer_sid, peer_sid, sksec->sclass,
SCTP_SOCKET__ASSOCIATION, &ad);
if (err)
return err;
}
/* Compute the MLS component for the connection and store
* the information in ep. This will be used by SCTP TCP type
* sockets and peeled off connections as they cause a new
* socket to be generated. selinux_sctp_sk_clone() will then
* plug this into the new socket.
*/
err = selinux_conn_sid(sksec->sid, peer_sid, &conn_sid);
if (err)
return err;
ep->secid = conn_sid;
ep->peer_secid = peer_sid;
/* Set any NetLabel labels including CIPSO/CALIPSO options. */
return selinux_netlbl_sctp_assoc_request(ep, skb);
}
/* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
* based on their @optname.
*/
static int selinux_sctp_bind_connect(struct sock *sk, int optname,
struct sockaddr *address,
int addrlen)
{
int len, err = 0, walk_size = 0;
void *addr_buf;
struct sockaddr *addr;
struct socket *sock;
if (!selinux_policycap_extsockclass())
return 0;
/* Process one or more addresses that may be IPv4 or IPv6 */
sock = sk->sk_socket;
addr_buf = address;
while (walk_size < addrlen) {
if (walk_size + sizeof(sa_family_t) > addrlen)
return -EINVAL;
addr = addr_buf;
switch (addr->sa_family) {
case AF_UNSPEC:
case AF_INET:
len = sizeof(struct sockaddr_in);
break;
case AF_INET6:
len = sizeof(struct sockaddr_in6);
break;
default:
return -EINVAL;
}
if (walk_size + len > addrlen)
return -EINVAL;
err = -EINVAL;
switch (optname) {
/* Bind checks */
case SCTP_PRIMARY_ADDR:
case SCTP_SET_PEER_PRIMARY_ADDR:
case SCTP_SOCKOPT_BINDX_ADD:
err = selinux_socket_bind(sock, addr, len);
break;
/* Connect checks */
case SCTP_SOCKOPT_CONNECTX:
case SCTP_PARAM_SET_PRIMARY:
case SCTP_PARAM_ADD_IP:
case SCTP_SENDMSG_CONNECT:
err = selinux_socket_connect_helper(sock, addr, len);
if (err)
return err;
/* As selinux_sctp_bind_connect() is called by the
* SCTP protocol layer, the socket is already locked,
* therefore selinux_netlbl_socket_connect_locked() is
* is called here. The situations handled are:
* sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
* whenever a new IP address is added or when a new
* primary address is selected.
* Note that an SCTP connect(2) call happens before
* the SCTP protocol layer and is handled via
* selinux_socket_connect().
*/
err = selinux_netlbl_socket_connect_locked(sk, addr);
break;
}
if (err)
return err;
addr_buf += len;
walk_size += len;
}
return 0;
}
/* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
static void selinux_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
struct sock *newsk)
{
struct sk_security_struct *sksec = sk->sk_security;
struct sk_security_struct *newsksec = newsk->sk_security;
/* If policy does not support SECCLASS_SCTP_SOCKET then call
* the non-sctp clone version.
*/
if (!selinux_policycap_extsockclass())
return selinux_sk_clone_security(sk, newsk);
newsksec->sid = ep->secid;
newsksec->peer_sid = ep->peer_secid;
newsksec->sclass = sksec->sclass;
selinux_netlbl_sctp_sk_clone(sk, newsk);
}
static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
struct request_sock *req)
{
struct sk_security_struct *sksec = sk->sk_security;
int err;
u16 family = req->rsk_ops->family;
u32 connsid;
u32 peersid;
err = selinux_skb_peerlbl_sid(skb, family, &peersid);
if (err)
return err;
err = selinux_conn_sid(sksec->sid, peersid, &connsid);
if (err)
return err;
req->secid = connsid;
req->peer_secid = peersid;
return selinux_netlbl_inet_conn_request(req, family);
}
static void selinux_inet_csk_clone(struct sock *newsk,
const struct request_sock *req)
{
struct sk_security_struct *newsksec = newsk->sk_security;
newsksec->sid = req->secid;
newsksec->peer_sid = req->peer_secid;
/* NOTE: Ideally, we should also get the isec->sid for the
new socket in sync, but we don't have the isec available yet.
So we will wait until sock_graft to do it, by which
time it will have been created and available. */
/* We don't need to take any sort of lock here as we are the only
* thread with access to newsksec */
selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
}
static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
{
u16 family = sk->sk_family;
struct sk_security_struct *sksec = sk->sk_security;
/* handle mapped IPv4 packets arriving via IPv6 sockets */
if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
family = PF_INET;
selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
}
static int selinux_secmark_relabel_packet(u32 sid)
{
const struct task_security_struct *__tsec;
u32 tsid;
__tsec = current_security();
tsid = __tsec->sid;
return avc_has_perm(&selinux_state,
tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
NULL);
}
static void selinux_secmark_refcount_inc(void)
{
atomic_inc(&selinux_secmark_refcount);
}
static void selinux_secmark_refcount_dec(void)
{
atomic_dec(&selinux_secmark_refcount);
}
static void selinux_req_classify_flow(const struct request_sock *req,
struct flowi *fl)
{
fl->flowi_secid = req->secid;
}
static int selinux_tun_dev_alloc_security(void **security)
{
struct tun_security_struct *tunsec;
tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
if (!tunsec)
return -ENOMEM;
tunsec->sid = current_sid();
*security = tunsec;
return 0;
}
static void selinux_tun_dev_free_security(void *security)
{
kfree(security);
}
static int selinux_tun_dev_create(void)
{
u32 sid = current_sid();
/* we aren't taking into account the "sockcreate" SID since the socket
* that is being created here is not a socket in the traditional sense,
* instead it is a private sock, accessible only to the kernel, and
* representing a wide range of network traffic spanning multiple
* connections unlike traditional sockets - check the TUN driver to
* get a better understanding of why this socket is special */
return avc_has_perm(&selinux_state,
sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
NULL);
}
static int selinux_tun_dev_attach_queue(void *security)
{
struct tun_security_struct *tunsec = security;
return avc_has_perm(&selinux_state,
current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
TUN_SOCKET__ATTACH_QUEUE, NULL);
}
static int selinux_tun_dev_attach(struct sock *sk, void *security)
{
struct tun_security_struct *tunsec = security;
struct sk_security_struct *sksec = sk->sk_security;
/* we don't currently perform any NetLabel based labeling here and it
* isn't clear that we would want to do so anyway; while we could apply
* labeling without the support of the TUN user the resulting labeled
* traffic from the other end of the connection would almost certainly
* cause confusion to the TUN user that had no idea network labeling
* protocols were being used */
sksec->sid = tunsec->sid;
sksec->sclass = SECCLASS_TUN_SOCKET;
return 0;
}
static int selinux_tun_dev_open(void *security)
{
struct tun_security_struct *tunsec = security;
u32 sid = current_sid();
int err;
err = avc_has_perm(&selinux_state,
sid, tunsec->sid, SECCLASS_TUN_SOCKET,
TUN_SOCKET__RELABELFROM, NULL);
if (err)
return err;
err = avc_has_perm(&selinux_state,
sid, sid, SECCLASS_TUN_SOCKET,
TUN_SOCKET__RELABELTO, NULL);
if (err)
return err;
tunsec->sid = sid;
return 0;
}
static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
{
int rc = 0;
unsigned int msg_len;
unsigned int data_len = skb->len;
unsigned char *data = skb->data;
struct nlmsghdr *nlh;
struct sk_security_struct *sksec = sk->sk_security;
u16 sclass = sksec->sclass;
u32 perm;
while (data_len >= nlmsg_total_size(0)) {
nlh = (struct nlmsghdr *)data;
/* NOTE: the nlmsg_len field isn't reliably set by some netlink
* users which means we can't reject skb's with bogus
* length fields; our solution is to follow what
* netlink_rcv_skb() does and simply skip processing at
* messages with length fields that are clearly junk
*/
if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len)
return 0;
rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm);
if (rc == 0) {
rc = sock_has_perm(sk, perm);
if (rc)
return rc;
} else if (rc == -EINVAL) {
/* -EINVAL is a missing msg/perm mapping */
pr_warn_ratelimited("SELinux: unrecognized netlink"
" message: protocol=%hu nlmsg_type=%hu sclass=%s"
" pid=%d comm=%s\n",
sk->sk_protocol, nlh->nlmsg_type,
secclass_map[sclass - 1].name,
task_pid_nr(current), current->comm);
if (enforcing_enabled(&selinux_state) &&
!security_get_allow_unknown(&selinux_state))
return rc;
rc = 0;
} else if (rc == -ENOENT) {
/* -ENOENT is a missing socket/class mapping, ignore */
rc = 0;
} else {
return rc;
}
/* move to the next message after applying netlink padding */
msg_len = NLMSG_ALIGN(nlh->nlmsg_len);
if (msg_len >= data_len)
return 0;
data_len -= msg_len;
data += msg_len;
}
return rc;
}
#ifdef CONFIG_NETFILTER
static unsigned int selinux_ip_forward(struct sk_buff *skb,
const struct net_device *indev,
u16 family)
{
int err;
char *addrp;
u32 peer_sid;
struct common_audit_data ad;
struct lsm_network_audit net = {0,};
u8 secmark_active;
u8 netlbl_active;
u8 peerlbl_active;
if (!selinux_policycap_netpeer())
return NF_ACCEPT;
secmark_active = selinux_secmark_enabled();
netlbl_active = netlbl_enabled();
peerlbl_active = selinux_peerlbl_enabled();
if (!secmark_active && !peerlbl_active)
return NF_ACCEPT;
if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
return NF_DROP;
ad.type = LSM_AUDIT_DATA_NET;
ad.u.net = &net;
ad.u.net->netif = indev->ifindex;
ad.u.net->family = family;
if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
return NF_DROP;
if (peerlbl_active) {
err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
addrp, family, peer_sid, &ad);
if (err) {
selinux_netlbl_err(skb, family, err, 1);
return NF_DROP;
}
}
if (secmark_active)
if (avc_has_perm(&selinux_state,
peer_sid, skb->secmark,
SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
return NF_DROP;
if (netlbl_active)
/* we do this in the FORWARD path and not the POST_ROUTING
* path because we want to make sure we apply the necessary
* labeling before IPsec is applied so we can leverage AH
* protection */
if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
return NF_DROP;
return NF_ACCEPT;
}
static unsigned int selinux_ipv4_forward(void *priv,
struct sk_buff *skb,
const struct nf_hook_state *state)
{
return selinux_ip_forward(skb, state->in, PF_INET);
}
#if IS_ENABLED(CONFIG_IPV6)
static unsigned int selinux_ipv6_forward(void *priv,
struct sk_buff *skb,
const struct nf_hook_state *state)
{
return selinux_ip_forward(skb, state->in, PF_INET6);
}
#endif /* IPV6 */
static unsigned int selinux_ip_output(struct sk_buff *skb,
u16 family)
{
struct sock *sk;
u32 sid;
if (!netlbl_enabled())
return NF_ACCEPT;
/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
* because we want to make sure we apply the necessary labeling
* before IPsec is applied so we can leverage AH protection */
sk = skb->sk;
if (sk) {
struct sk_security_struct *sksec;
if (sk_listener(sk))
/* if the socket is the listening state then this
* packet is a SYN-ACK packet which means it needs to
* be labeled based on the connection/request_sock and
* not the parent socket. unfortunately, we can't
* lookup the request_sock yet as it isn't queued on
* the parent socket until after the SYN-ACK is sent.
* the "solution" is to simply pass the packet as-is
* as any IP option based labeling should be copied
* from the initial connection request (in the IP
* layer). it is far from ideal, but until we get a
* security label in the packet itself this is the
* best we can do. */
return NF_ACCEPT;
/* standard practice, label using the parent socket */
sksec = sk->sk_security;
sid = sksec->sid;
} else
sid = SECINITSID_KERNEL;
if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
return NF_DROP;
return NF_ACCEPT;
}
static unsigned int selinux_ipv4_output(void *priv,
struct sk_buff *skb,
const struct nf_hook_state *state)
{
return selinux_ip_output(skb, PF_INET);
}
#if IS_ENABLED(CONFIG_IPV6)
static unsigned int selinux_ipv6_output(void *priv,
struct sk_buff *skb,
const struct nf_hook_state *state)
{
return selinux_ip_output(skb, PF_INET6);
}
#endif /* IPV6 */
static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
int ifindex,
u16 family)
{
struct sock *sk = skb_to_full_sk(skb);
struct sk_security_struct *sksec;
struct common_audit_data ad;
struct lsm_network_audit net = {0,};
char *addrp;
u8 proto;
if (sk == NULL)
return NF_ACCEPT;
sksec = sk->sk_security;
ad.type = LSM_AUDIT_DATA_NET;
ad.u.net = &net;
ad.u.net->netif = ifindex;
ad.u.net->family = family;
if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
return NF_DROP;
if (selinux_secmark_enabled())
if (avc_has_perm(&selinux_state,
sksec->sid, skb->secmark,
SECCLASS_PACKET, PACKET__SEND, &ad))
return NF_DROP_ERR(-ECONNREFUSED);
if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
return NF_DROP_ERR(-ECONNREFUSED);
return NF_ACCEPT;
}
static unsigned int selinux_ip_postroute(struct sk_buff *skb,
const struct net_device *outdev,
u16 family)
{
u32 secmark_perm;
u32 peer_sid;
int ifindex = outdev->ifindex;
struct sock *sk;
struct common_audit_data ad;
struct lsm_network_audit net = {0,};
char *addrp;
u8 secmark_active;
u8 peerlbl_active;
/* If any sort of compatibility mode is enabled then handoff processing
* to the selinux_ip_postroute_compat() function to deal with the
* special handling. We do this in an attempt to keep this function
* as fast and as clean as possible. */
if (!selinux_policycap_netpeer())
return selinux_ip_postroute_compat(skb, ifindex, family);
secmark_active = selinux_secmark_enabled();
peerlbl_active = selinux_peerlbl_enabled();
if (!secmark_active && !peerlbl_active)
return NF_ACCEPT;
sk = skb_to_full_sk(skb);
#ifdef CONFIG_XFRM
/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
* packet transformation so allow the packet to pass without any checks
* since we'll have another chance to perform access control checks
* when the packet is on it's final way out.
* NOTE: there appear to be some IPv6 multicast cases where skb->dst
* is NULL, in this case go ahead and apply access control.
* NOTE: if this is a local socket (skb->sk != NULL) that is in the
* TCP listening state we cannot wait until the XFRM processing
* is done as we will miss out on the SA label if we do;
* unfortunately, this means more work, but it is only once per
* connection. */
if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
!(sk && sk_listener(sk)))
return NF_ACCEPT;
#endif
if (sk == NULL) {
/* Without an associated socket the packet is either coming
* from the kernel or it is being forwarded; check the packet
* to determine which and if the packet is being forwarded
* query the packet directly to determine the security label. */
if (skb->skb_iif) {
secmark_perm = PACKET__FORWARD_OUT;
if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
return NF_DROP;
} else {
secmark_perm = PACKET__SEND;
peer_sid = SECINITSID_KERNEL;
}
} else if (sk_listener(sk)) {
/* Locally generated packet but the associated socket is in the
* listening state which means this is a SYN-ACK packet. In
* this particular case the correct security label is assigned
* to the connection/request_sock but unfortunately we can't
* query the request_sock as it isn't queued on the parent
* socket until after the SYN-ACK packet is sent; the only
* viable choice is to regenerate the label like we do in
* selinux_inet_conn_request(). See also selinux_ip_output()
* for similar problems. */
u32 skb_sid;
struct sk_security_struct *sksec;
sksec = sk->sk_security;
if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
return NF_DROP;
/* At this point, if the returned skb peerlbl is SECSID_NULL
* and the packet has been through at least one XFRM
* transformation then we must be dealing with the "final"
* form of labeled IPsec packet; since we've already applied
* all of our access controls on this packet we can safely
* pass the packet. */
if (skb_sid == SECSID_NULL) {
switch (family) {
case PF_INET:
if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
return NF_ACCEPT;
break;
case PF_INET6:
if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
return NF_ACCEPT;
break;
default:
return NF_DROP_ERR(-ECONNREFUSED);
}
}
if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
return NF_DROP;
secmark_perm = PACKET__SEND;
} else {
/* Locally generated packet, fetch the security label from the
* associated socket. */
struct sk_security_struct *sksec = sk->sk_security;
peer_sid = sksec->sid;
secmark_perm = PACKET__SEND;
}
ad.type = LSM_AUDIT_DATA_NET;
ad.u.net = &net;
ad.u.net->netif = ifindex;
ad.u.net->family = family;
if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
return NF_DROP;
if (secmark_active)
if (avc_has_perm(&selinux_state,
peer_sid, skb->secmark,
SECCLASS_PACKET, secmark_perm, &ad))
return NF_DROP_ERR(-ECONNREFUSED);
if (peerlbl_active) {
u32 if_sid;
u32 node_sid;
if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
return NF_DROP;
if (avc_has_perm(&selinux_state,
peer_sid, if_sid,
SECCLASS_NETIF, NETIF__EGRESS, &ad))
return NF_DROP_ERR(-ECONNREFUSED);
if (sel_netnode_sid(addrp, family, &node_sid))
return NF_DROP;
if (avc_has_perm(&selinux_state,
peer_sid, node_sid,
SECCLASS_NODE, NODE__SENDTO, &ad))
return NF_DROP_ERR(-ECONNREFUSED);
}
return NF_ACCEPT;
}
static unsigned int selinux_ipv4_postroute(void *priv,
struct sk_buff *skb,
const struct nf_hook_state *state)
{
return selinux_ip_postroute(skb, state->out, PF_INET);
}
#if IS_ENABLED(CONFIG_IPV6)
static unsigned int selinux_ipv6_postroute(void *priv,
struct sk_buff *skb,
const struct nf_hook_state *state)
{
return selinux_ip_postroute(skb, state->out, PF_INET6);
}
#endif /* IPV6 */
#endif /* CONFIG_NETFILTER */
static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
{
return selinux_nlmsg_perm(sk, skb);
}
static int ipc_alloc_security(struct kern_ipc_perm *perm,
u16 sclass)
{
struct ipc_security_struct *isec;
isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
if (!isec)
return -ENOMEM;
isec->sclass = sclass;
isec->sid = current_sid();
perm->security = isec;
return 0;
}
static void ipc_free_security(struct kern_ipc_perm *perm)
{
struct ipc_security_struct *isec = perm->security;
perm->security = NULL;
kfree(isec);
}
static int msg_msg_alloc_security(struct msg_msg *msg)
{
struct msg_security_struct *msec;
msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
if (!msec)
return -ENOMEM;
msec->sid = SECINITSID_UNLABELED;
msg->security = msec;
return 0;
}
static void msg_msg_free_security(struct msg_msg *msg)
{
struct msg_security_struct *msec = msg->security;
msg->security = NULL;
kfree(msec);
}
static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
u32 perms)
{
struct ipc_security_struct *isec;
struct common_audit_data ad;
u32 sid = current_sid();
isec = ipc_perms->security;
ad.type = LSM_AUDIT_DATA_IPC;
ad.u.ipc_id = ipc_perms->key;
return avc_has_perm(&selinux_state,
sid, isec->sid, isec->sclass, perms, &ad);
}
static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
{
return msg_msg_alloc_security(msg);
}
static void selinux_msg_msg_free_security(struct msg_msg *msg)
{
msg_msg_free_security(msg);
}
/* message queue security operations */
static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
{
struct ipc_security_struct *isec;
struct common_audit_data ad;
u32 sid = current_sid();
int rc;
rc = ipc_alloc_security(msq, SECCLASS_MSGQ);
if (rc)
return rc;
isec = msq->security;
ad.type = LSM_AUDIT_DATA_IPC;
ad.u.ipc_id = msq->key;
rc = avc_has_perm(&selinux_state,
sid, isec->sid, SECCLASS_MSGQ,
MSGQ__CREATE, &ad);
if (rc) {
ipc_free_security(msq);
return rc;
}
return 0;
}
static void selinux_msg_queue_free_security(struct kern_ipc_perm *msq)
{
ipc_free_security(msq);
}
static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
{
struct ipc_security_struct *isec;
struct common_audit_data ad;
u32 sid = current_sid();
isec = msq->security;
ad.type = LSM_AUDIT_DATA_IPC;
ad.u.ipc_id = msq->key;
return avc_has_perm(&selinux_state,
sid, isec->sid, SECCLASS_MSGQ,
MSGQ__ASSOCIATE, &ad);
}
static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
{
int err;
int perms;
switch (cmd) {
case IPC_INFO:
case MSG_INFO:
/* No specific object, just general system-wide information. */
return avc_has_perm(&selinux_state,
current_sid(), SECINITSID_KERNEL,
SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
case IPC_STAT:
case MSG_STAT:
case MSG_STAT_ANY:
perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
break;
case IPC_SET:
perms = MSGQ__SETATTR;
break;
case IPC_RMID:
perms = MSGQ__DESTROY;
break;
default:
return 0;
}
err = ipc_has_perm(msq, perms);
return err;
}
static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
{
struct ipc_security_struct *isec;
struct msg_security_struct *msec;
struct common_audit_data ad;
u32 sid = current_sid();
int rc;
isec = msq->security;
msec = msg->security;
/*
* First time through, need to assign label to the message
*/
if (msec->sid == SECINITSID_UNLABELED) {
/*
* Compute new sid based on current process and
* message queue this message will be stored in
*/
rc = security_transition_sid(&selinux_state, sid, isec->sid,
SECCLASS_MSG, NULL, &msec->sid);
if (rc)
return rc;
}
ad.type = LSM_AUDIT_DATA_IPC;
ad.u.ipc_id = msq->key;
/* Can this process write to the queue? */
rc = avc_has_perm(&selinux_state,
sid, isec->sid, SECCLASS_MSGQ,
MSGQ__WRITE, &ad);
if (!rc)
/* Can this process send the message */
rc = avc_has_perm(&selinux_state,
sid, msec->sid, SECCLASS_MSG,
MSG__SEND, &ad);
if (!rc)
/* Can the message be put in the queue? */
rc = avc_has_perm(&selinux_state,
msec->sid, isec->sid, SECCLASS_MSGQ,
MSGQ__ENQUEUE, &ad);
return rc;
}
static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
struct task_struct *target,
long type, int mode)
{
struct ipc_security_struct *isec;
struct msg_security_struct *msec;
struct common_audit_data ad;
u32 sid = task_sid(target);
int rc;
isec = msq->security;
msec = msg->security;
ad.type = LSM_AUDIT_DATA_IPC;
ad.u.ipc_id = msq->key;
rc = avc_has_perm(&selinux_state,
sid, isec->sid,
SECCLASS_MSGQ, MSGQ__READ, &ad);
if (!rc)
rc = avc_has_perm(&selinux_state,
sid, msec->sid,
SECCLASS_MSG, MSG__RECEIVE, &ad);
return rc;
}
/* Shared Memory security operations */
static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
{
struct ipc_security_struct *isec;
struct common_audit_data ad;
u32 sid = current_sid();
int rc;
rc = ipc_alloc_security(shp, SECCLASS_SHM);
if (rc)
return rc;
isec = shp->security;
ad.type = LSM_AUDIT_DATA_IPC;
ad.u.ipc_id = shp->key;
rc = avc_has_perm(&selinux_state,
sid, isec->sid, SECCLASS_SHM,
SHM__CREATE, &ad);
if (rc) {
ipc_free_security(shp);
return rc;
}
return 0;
}
static void selinux_shm_free_security(struct kern_ipc_perm *shp)
{
ipc_free_security(shp);
}
static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
{
struct ipc_security_struct *isec;
struct common_audit_data ad;
u32 sid = current_sid();
isec = shp->security;
ad.type = LSM_AUDIT_DATA_IPC;
ad.u.ipc_id = shp->key;
return avc_has_perm(&selinux_state,
sid, isec->sid, SECCLASS_SHM,
SHM__ASSOCIATE, &ad);
}
/* Note, at this point, shp is locked down */
static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
{
int perms;
int err;
switch (cmd) {
case IPC_INFO:
case SHM_INFO:
/* No specific object, just general system-wide information. */
return avc_has_perm(&selinux_state,
current_sid(), SECINITSID_KERNEL,
SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
case IPC_STAT:
case SHM_STAT:
case SHM_STAT_ANY:
perms = SHM__GETATTR | SHM__ASSOCIATE;
break;
case IPC_SET:
perms = SHM__SETATTR;
break;
case SHM_LOCK:
case SHM_UNLOCK:
perms = SHM__LOCK;
break;
case IPC_RMID:
perms = SHM__DESTROY;
break;
default:
return 0;
}
err = ipc_has_perm(shp, perms);
return err;
}
static int selinux_shm_shmat(struct kern_ipc_perm *shp,
char __user *shmaddr, int shmflg)
{
u32 perms;
if (shmflg & SHM_RDONLY)
perms = SHM__READ;
else
perms = SHM__READ | SHM__WRITE;
return ipc_has_perm(shp, perms);
}
/* Semaphore security operations */
static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
{
struct ipc_security_struct *isec;
struct common_audit_data ad;
u32 sid = current_sid();
int rc;
rc = ipc_alloc_security(sma, SECCLASS_SEM);
if (rc)
return rc;
isec = sma->security;
ad.type = LSM_AUDIT_DATA_IPC;
ad.u.ipc_id = sma->key;
rc = avc_has_perm(&selinux_state,
sid, isec->sid, SECCLASS_SEM,
SEM__CREATE, &ad);
if (rc) {
ipc_free_security(sma);
return rc;
}
return 0;
}
static void selinux_sem_free_security(struct kern_ipc_perm *sma)
{
ipc_free_security(sma);
}
static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
{
struct ipc_security_struct *isec;
struct common_audit_data ad;
u32 sid = current_sid();
isec = sma->security;
ad.type = LSM_AUDIT_DATA_IPC;
ad.u.ipc_id = sma->key;
return avc_has_perm(&selinux_state,
sid, isec->sid, SECCLASS_SEM,
SEM__ASSOCIATE, &ad);
}
/* Note, at this point, sma is locked down */
static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
{
int err;
u32 perms;
switch (cmd) {
case IPC_INFO:
case SEM_INFO:
/* No specific object, just general system-wide information. */
return avc_has_perm(&selinux_state,
current_sid(), SECINITSID_KERNEL,
SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
case GETPID:
case GETNCNT:
case GETZCNT:
perms = SEM__GETATTR;
break;
case GETVAL:
case GETALL:
perms = SEM__READ;
break;
case SETVAL:
case SETALL:
perms = SEM__WRITE;
break;
case IPC_RMID:
perms = SEM__DESTROY;
break;
case IPC_SET:
perms = SEM__SETATTR;
break;
case IPC_STAT:
case SEM_STAT:
case SEM_STAT_ANY:
perms = SEM__GETATTR | SEM__ASSOCIATE;
break;
default:
return 0;
}
err = ipc_has_perm(sma, perms);
return err;
}
static int selinux_sem_semop(struct kern_ipc_perm *sma,
struct sembuf *sops, unsigned nsops, int alter)
{
u32 perms;
if (alter)
perms = SEM__READ | SEM__WRITE;
else
perms = SEM__READ;
return ipc_has_perm(sma, perms);
}
static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
{
u32 av = 0;
av = 0;
if (flag & S_IRUGO)
av |= IPC__UNIX_READ;
if (flag & S_IWUGO)
av |= IPC__UNIX_WRITE;
if (av == 0)
return 0;
return ipc_has_perm(ipcp, av);
}
static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
{
struct ipc_security_struct *isec = ipcp->security;
*secid = isec->sid;
}
static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
{
if (inode)
inode_doinit_with_dentry(inode, dentry);
}
static int selinux_getprocattr(struct task_struct *p,
char *name, char **value)
{
const struct task_security_struct *__tsec;
u32 sid;
int error;
unsigned len;
rcu_read_lock();
__tsec = __task_cred(p)->security;
if (current != p) {
error = avc_has_perm(&selinux_state,
current_sid(), __tsec->sid,
SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
if (error)
goto bad;
}
if (!strcmp(name, "current"))
sid = __tsec->sid;
else if (!strcmp(name, "prev"))
sid = __tsec->osid;
else if (!strcmp(name, "exec"))
sid = __tsec->exec_sid;
else if (!strcmp(name, "fscreate"))
sid = __tsec->create_sid;
else if (!strcmp(name, "keycreate"))
sid = __tsec->keycreate_sid;
else if (!strcmp(name, "sockcreate"))
sid = __tsec->sockcreate_sid;
else {
error = -EINVAL;
goto bad;
}
rcu_read_unlock();
if (!sid)
return 0;
error = security_sid_to_context(&selinux_state, sid, value, &len);
if (error)
return error;
return len;
bad:
rcu_read_unlock();
return error;
}
static int selinux_setprocattr(const char *name, void *value, size_t size)
{
struct task_security_struct *tsec;
struct cred *new;
u32 mysid = current_sid(), sid = 0, ptsid;
int error;
char *str = value;
/*
* Basic control over ability to set these attributes at all.
*/
if (!strcmp(name, "exec"))
error = avc_has_perm(&selinux_state,
mysid, mysid, SECCLASS_PROCESS,
PROCESS__SETEXEC, NULL);
else if (!strcmp(name, "fscreate"))
error = avc_has_perm(&selinux_state,
mysid, mysid, SECCLASS_PROCESS,
PROCESS__SETFSCREATE, NULL);
else if (!strcmp(name, "keycreate"))
error = avc_has_perm(&selinux_state,
mysid, mysid, SECCLASS_PROCESS,
PROCESS__SETKEYCREATE, NULL);
else if (!strcmp(name, "sockcreate"))
error = avc_has_perm(&selinux_state,
mysid, mysid, SECCLASS_PROCESS,
PROCESS__SETSOCKCREATE, NULL);
else if (!strcmp(name, "current"))
error = avc_has_perm(&selinux_state,
mysid, mysid, SECCLASS_PROCESS,
PROCESS__SETCURRENT, NULL);
else
error = -EINVAL;
if (error)
return error;
/* Obtain a SID for the context, if one was specified. */
if (size && str[0] && str[0] != '\n') {
if (str[size-1] == '\n') {
str[size-1] = 0;
size--;
}
error = security_context_to_sid(&selinux_state, value, size,
&sid, GFP_KERNEL);
if (error == -EINVAL && !strcmp(name, "fscreate")) {
if (!has_cap_mac_admin(true)) {
struct audit_buffer *ab;
size_t audit_size;
/* We strip a nul only if it is at the end, otherwise the
* context contains a nul and we should audit that */
if (str[size - 1] == '\0')
audit_size = size - 1;
else
audit_size = size;
ab = audit_log_start(audit_context(),
GFP_ATOMIC,
AUDIT_SELINUX_ERR);
audit_log_format(ab, "op=fscreate invalid_context=");
audit_log_n_untrustedstring(ab, value, audit_size);
audit_log_end(ab);
return error;
}
error = security_context_to_sid_force(
&selinux_state,
value, size, &sid);
}
if (error)
return error;
}
new = prepare_creds();
if (!new)
return -ENOMEM;
/* Permission checking based on the specified context is
performed during the actual operation (execve,
open/mkdir/...), when we know the full context of the
operation. See selinux_bprm_set_creds for the execve
checks and may_create for the file creation checks. The
operation will then fail if the context is not permitted. */
tsec = new->security;
if (!strcmp(name, "exec")) {
tsec->exec_sid = sid;
} else if (!strcmp(name, "fscreate")) {
tsec->create_sid = sid;
} else if (!strcmp(name, "keycreate")) {
if (sid) {
error = avc_has_perm(&selinux_state, mysid, sid,
SECCLASS_KEY, KEY__CREATE, NULL);
if (error)
goto abort_change;
}
tsec->keycreate_sid = sid;
} else if (!strcmp(name, "sockcreate")) {
tsec->sockcreate_sid = sid;
} else if (!strcmp(name, "current")) {
error = -EINVAL;
if (sid == 0)
goto abort_change;
/* Only allow single threaded processes to change context */
error = -EPERM;
if (!current_is_single_threaded()) {
error = security_bounded_transition(&selinux_state,
tsec->sid, sid);
if (error)
goto abort_change;
}
/* Check permissions for the transition. */
error = avc_has_perm(&selinux_state,
tsec->sid, sid, SECCLASS_PROCESS,
PROCESS__DYNTRANSITION, NULL);
if (error)
goto abort_change;
/* Check for ptracing, and update the task SID if ok.
Otherwise, leave SID unchanged and fail. */
ptsid = ptrace_parent_sid();
if (ptsid != 0) {
error = avc_has_perm(&selinux_state,
ptsid, sid, SECCLASS_PROCESS,
PROCESS__PTRACE, NULL);
if (error)
goto abort_change;
}
tsec->sid = sid;
} else {
error = -EINVAL;
goto abort_change;
}
commit_creds(new);
return size;
abort_change:
abort_creds(new);
return error;
}
static int selinux_ismaclabel(const char *name)
{
return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
}
static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
{
return security_sid_to_context(&selinux_state, secid,
secdata, seclen);
}
static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
{
return security_context_to_sid(&selinux_state, secdata, seclen,
secid, GFP_KERNEL);
}
static void selinux_release_secctx(char *secdata, u32 seclen)
{
kfree(secdata);
}
static void selinux_inode_invalidate_secctx(struct inode *inode)
{
struct inode_security_struct *isec = inode->i_security;
spin_lock(&isec->lock);
isec->initialized = LABEL_INVALID;
spin_unlock(&isec->lock);
}
/*
* called with inode->i_mutex locked
*/
static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
{
int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
ctx, ctxlen, 0);
/* Do not return error when suppressing label (SBLABEL_MNT not set). */
return rc == -EOPNOTSUPP ? 0 : rc;
}
/*
* called with inode->i_mutex locked
*/
static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
{
return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
}
static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
{
int len = 0;
len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
ctx, true);
if (len < 0)
return len;
*ctxlen = len;
return 0;
}
#ifdef CONFIG_KEYS
static int selinux_key_alloc(struct key *k, const struct cred *cred,
unsigned long flags)
{
const struct task_security_struct *tsec;
struct key_security_struct *ksec;
ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
if (!ksec)
return -ENOMEM;
tsec = cred->security;
if (tsec->keycreate_sid)
ksec->sid = tsec->keycreate_sid;
else
ksec->sid = tsec->sid;
k->security = ksec;
return 0;
}
static void selinux_key_free(struct key *k)
{
struct key_security_struct *ksec = k->security;
k->security = NULL;
kfree(ksec);
}
static int selinux_key_permission(key_ref_t key_ref,
const struct cred *cred,
unsigned perm)
{
struct key *key;
struct key_security_struct *ksec;
u32 sid;
/* if no specific permissions are requested, we skip the
permission check. No serious, additional covert channels
appear to be created. */
if (perm == 0)
return 0;
sid = cred_sid(cred);
key = key_ref_to_ptr(key_ref);
ksec = key->security;
return avc_has_perm(&selinux_state,
sid, ksec->sid, SECCLASS_KEY, perm, NULL);
}
static int selinux_key_getsecurity(struct key *key, char **_buffer)
{
struct key_security_struct *ksec = key->security;
char *context = NULL;
unsigned len;
int rc;
rc = security_sid_to_context(&selinux_state, ksec->sid,
&context, &len);
if (!rc)
rc = len;
*_buffer = context;
return rc;
}
#endif
#ifdef CONFIG_SECURITY_INFINIBAND
static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
{
struct common_audit_data ad;
int err;
u32 sid = 0;
struct ib_security_struct *sec = ib_sec;
struct lsm_ibpkey_audit ibpkey;
err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
if (err)
return err;
ad.type = LSM_AUDIT_DATA_IBPKEY;
ibpkey.subnet_prefix = subnet_prefix;
ibpkey.pkey = pkey_val;
ad.u.ibpkey = &ibpkey;
return avc_has_perm(&selinux_state,
sec->sid, sid,
SECCLASS_INFINIBAND_PKEY,
INFINIBAND_PKEY__ACCESS, &ad);
}
static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
u8 port_num)
{
struct common_audit_data ad;
int err;
u32 sid = 0;
struct ib_security_struct *sec = ib_sec;
struct lsm_ibendport_audit ibendport;
err = security_ib_endport_sid(&selinux_state, dev_name, port_num,
&sid);
if (err)
return err;
ad.type = LSM_AUDIT_DATA_IBENDPORT;
strncpy(ibendport.dev_name, dev_name, sizeof(ibendport.dev_name));
ibendport.port = port_num;
ad.u.ibendport = &ibendport;
return avc_has_perm(&selinux_state,
sec->sid, sid,
SECCLASS_INFINIBAND_ENDPORT,
INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
}
static int selinux_ib_alloc_security(void **ib_sec)
{
struct ib_security_struct *sec;
sec = kzalloc(sizeof(*sec), GFP_KERNEL);
if (!sec)
return -ENOMEM;
sec->sid = current_sid();
*ib_sec = sec;
return 0;
}
static void selinux_ib_free_security(void *ib_sec)
{
kfree(ib_sec);
}
#endif
#ifdef CONFIG_BPF_SYSCALL
static int selinux_bpf(int cmd, union bpf_attr *attr,
unsigned int size)
{
u32 sid = current_sid();
int ret;
switch (cmd) {
case BPF_MAP_CREATE:
ret = avc_has_perm(&selinux_state,
sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
NULL);
break;
case BPF_PROG_LOAD:
ret = avc_has_perm(&selinux_state,
sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
NULL);
break;
default:
ret = 0;
break;
}
return ret;
}
static u32 bpf_map_fmode_to_av(fmode_t fmode)
{
u32 av = 0;
if (fmode & FMODE_READ)
av |= BPF__MAP_READ;
if (fmode & FMODE_WRITE)
av |= BPF__MAP_WRITE;
return av;
}
/* This function will check the file pass through unix socket or binder to see
* if it is a bpf related object. And apply correspinding checks on the bpf
* object based on the type. The bpf maps and programs, not like other files and
* socket, are using a shared anonymous inode inside the kernel as their inode.
* So checking that inode cannot identify if the process have privilege to
* access the bpf object and that's why we have to add this additional check in
* selinux_file_receive and selinux_binder_transfer_files.
*/
static int bpf_fd_pass(struct file *file, u32 sid)
{
struct bpf_security_struct *bpfsec;
struct bpf_prog *prog;
struct bpf_map *map;
int ret;
if (file->f_op == &bpf_map_fops) {
map = file->private_data;
bpfsec = map->security;
ret = avc_has_perm(&selinux_state,
sid, bpfsec->sid, SECCLASS_BPF,
bpf_map_fmode_to_av(file->f_mode), NULL);
if (ret)
return ret;
} else if (file->f_op == &bpf_prog_fops) {
prog = file->private_data;
bpfsec = prog->aux->security;
ret = avc_has_perm(&selinux_state,
sid, bpfsec->sid, SECCLASS_BPF,
BPF__PROG_RUN, NULL);
if (ret)
return ret;
}
return 0;
}
static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
{
u32 sid = current_sid();
struct bpf_security_struct *bpfsec;
bpfsec = map->security;
return avc_has_perm(&selinux_state,
sid, bpfsec->sid, SECCLASS_BPF,
bpf_map_fmode_to_av(fmode), NULL);
}
static int selinux_bpf_prog(struct bpf_prog *prog)
{
u32 sid = current_sid();
struct bpf_security_struct *bpfsec;
bpfsec = prog->aux->security;
return avc_has_perm(&selinux_state,
sid, bpfsec->sid, SECCLASS_BPF,
BPF__PROG_RUN, NULL);
}
static int selinux_bpf_map_alloc(struct bpf_map *map)
{
struct bpf_security_struct *bpfsec;
bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
if (!bpfsec)
return -ENOMEM;
bpfsec->sid = current_sid();
map->security = bpfsec;
return 0;
}
static void selinux_bpf_map_free(struct bpf_map *map)
{
struct bpf_security_struct *bpfsec = map->security;
map->security = NULL;
kfree(bpfsec);
}
static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux)
{
struct bpf_security_struct *bpfsec;
bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
if (!bpfsec)
return -ENOMEM;
bpfsec->sid = current_sid();
aux->security = bpfsec;
return 0;
}
static void selinux_bpf_prog_free(struct bpf_prog_aux *aux)
{
struct bpf_security_struct *bpfsec = aux->security;
aux->security = NULL;
kfree(bpfsec);
}
#endif
#ifdef CONFIG_PERF_EVENTS
static int selinux_perf_event_open(struct perf_event_attr *attr, int type)
{
u32 requested, sid = current_sid();
if (type == PERF_SECURITY_OPEN)
requested = PERF_EVENT__OPEN;
else if (type == PERF_SECURITY_CPU)
requested = PERF_EVENT__CPU;
else if (type == PERF_SECURITY_KERNEL)
requested = PERF_EVENT__KERNEL;
else if (type == PERF_SECURITY_TRACEPOINT)
requested = PERF_EVENT__TRACEPOINT;
else
return -EINVAL;
return avc_has_perm(&selinux_state, sid, sid, SECCLASS_PERF_EVENT,
requested, NULL);
}
static int selinux_perf_event_alloc(struct perf_event *event)
{
struct perf_event_security_struct *perfsec;
perfsec = kzalloc(sizeof(*perfsec), GFP_KERNEL);
if (!perfsec)
return -ENOMEM;
perfsec->sid = current_sid();
event->security = perfsec;
return 0;
}
static void selinux_perf_event_free(struct perf_event *event)
{
struct perf_event_security_struct *perfsec = event->security;
event->security = NULL;
kfree(perfsec);
}
static int selinux_perf_event_read(struct perf_event *event)
{
struct perf_event_security_struct *perfsec = event->security;
u32 sid = current_sid();
return avc_has_perm(&selinux_state, sid, perfsec->sid,
SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL);
}
static int selinux_perf_event_write(struct perf_event *event)
{
struct perf_event_security_struct *perfsec = event->security;
u32 sid = current_sid();
return avc_has_perm(&selinux_state, sid, perfsec->sid,
SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL);
}
#endif
static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = {
LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
LSM_HOOK_INIT(capget, selinux_capget),
LSM_HOOK_INIT(capset, selinux_capset),
LSM_HOOK_INIT(capable, selinux_capable),
LSM_HOOK_INIT(quotactl, selinux_quotactl),
LSM_HOOK_INIT(quota_on, selinux_quota_on),
LSM_HOOK_INIT(syslog, selinux_syslog),
LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
LSM_HOOK_INIT(bprm_set_creds, selinux_bprm_set_creds),
LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security),
LSM_HOOK_INIT(sb_copy_data, selinux_sb_copy_data),
LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
LSM_HOOK_INIT(sb_mount, selinux_mount),
LSM_HOOK_INIT(sb_umount, selinux_umount),
LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
LSM_HOOK_INIT(sb_parse_opts_str, selinux_parse_opts_str),
LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
LSM_HOOK_INIT(inode_create, selinux_inode_create),
LSM_HOOK_INIT(inode_link, selinux_inode_link),
LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
LSM_HOOK_INIT(file_permission, selinux_file_permission),
LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
LSM_HOOK_INIT(file_free_security, selinux_file_free_security),
LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
LSM_HOOK_INIT(file_lock, selinux_file_lock),
LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
LSM_HOOK_INIT(file_receive, selinux_file_receive),
LSM_HOOK_INIT(file_open, selinux_file_open),
LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
LSM_HOOK_INIT(cred_alloc_blank, selinux_cred_alloc_blank),
LSM_HOOK_INIT(cred_free, selinux_cred_free),
LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid),
LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
LSM_HOOK_INIT(task_kill, selinux_task_kill),
LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
LSM_HOOK_INIT(msg_msg_free_security, selinux_msg_msg_free_security),
LSM_HOOK_INIT(msg_queue_alloc_security,
selinux_msg_queue_alloc_security),
LSM_HOOK_INIT(msg_queue_free_security, selinux_msg_queue_free_security),
LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
LSM_HOOK_INIT(shm_free_security, selinux_shm_free_security),
LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
LSM_HOOK_INIT(sem_free_security, selinux_sem_free_security),
LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
LSM_HOOK_INIT(socket_create, selinux_socket_create),
LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
LSM_HOOK_INIT(socket_getpeersec_stream,
selinux_socket_getpeersec_stream),
LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
#ifdef CONFIG_SECURITY_INFINIBAND
LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
LSM_HOOK_INIT(ib_endport_manage_subnet,
selinux_ib_endport_manage_subnet),
LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
#endif
#ifdef CONFIG_SECURITY_NETWORK_XFRM
LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
LSM_HOOK_INIT(xfrm_state_alloc_acquire,
selinux_xfrm_state_alloc_acquire),
LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
LSM_HOOK_INIT(xfrm_state_pol_flow_match,
selinux_xfrm_state_pol_flow_match),
LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
#endif
#ifdef CONFIG_KEYS
LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
LSM_HOOK_INIT(key_free, selinux_key_free),
LSM_HOOK_INIT(key_permission, selinux_key_permission),
LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
#endif
#ifdef CONFIG_AUDIT
LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
#endif
#ifdef CONFIG_BPF_SYSCALL
LSM_HOOK_INIT(bpf, selinux_bpf),
LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc),
LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc),
LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free),
LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free),
#endif
#ifdef CONFIG_PERF_EVENTS
LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open),
LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc),
LSM_HOOK_INIT(perf_event_free, selinux_perf_event_free),
LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read),
LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write),
#endif
};
static __init int selinux_init(void)
{
if (!security_module_enable("selinux")) {
selinux_enabled = 0;
return 0;
}
if (!selinux_enabled) {
pr_info("SELinux: Disabled at boot.\n");
return 0;
}
pr_info("SELinux: Initializing.\n");
memset(&selinux_state, 0, sizeof(selinux_state));
enforcing_set(&selinux_state, selinux_enforcing_boot);
selinux_state.checkreqprot = selinux_checkreqprot_boot;
selinux_ss_init(&selinux_state.ss);
selinux_avc_init(&selinux_state.avc);
/* Set the security state for the initial task. */
cred_init_security();
default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
sel_inode_cache = kmem_cache_create("selinux_inode_security",
sizeof(struct inode_security_struct),
0, SLAB_PANIC, NULL);
file_security_cache = kmem_cache_create("selinux_file_security",
sizeof(struct file_security_struct),
0, SLAB_PANIC, NULL);
avc_init();
avtab_cache_init();
ebitmap_cache_init();
hashtab_cache_init();
security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux");
if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
panic("SELinux: Unable to register AVC netcache callback\n");
if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
panic("SELinux: Unable to register AVC LSM notifier callback\n");
if (selinux_enforcing_boot)
pr_debug("SELinux: Starting in enforcing mode\n");
else
pr_debug("SELinux: Starting in permissive mode\n");
return 0;
}
static void delayed_superblock_init(struct super_block *sb, void *unused)
{
superblock_doinit(sb, NULL);
}
void selinux_complete_init(void)
{
pr_debug("SELinux: Completing initialization.\n");
/* Set up any superblocks initialized prior to the policy load. */
pr_debug("SELinux: Setting up existing superblocks.\n");
iterate_supers(delayed_superblock_init, NULL);
}
/* SELinux requires early initialization in order to label
all processes and objects when they are created. */
security_initcall(selinux_init);
#if defined(CONFIG_NETFILTER)
static const struct nf_hook_ops selinux_nf_ops[] = {
{
.hook = selinux_ipv4_postroute,
.pf = NFPROTO_IPV4,
.hooknum = NF_INET_POST_ROUTING,
.priority = NF_IP_PRI_SELINUX_LAST,
},
{
.hook = selinux_ipv4_forward,
.pf = NFPROTO_IPV4,
.hooknum = NF_INET_FORWARD,
.priority = NF_IP_PRI_SELINUX_FIRST,
},
{
.hook = selinux_ipv4_output,
.pf = NFPROTO_IPV4,
.hooknum = NF_INET_LOCAL_OUT,
.priority = NF_IP_PRI_SELINUX_FIRST,
},
#if IS_ENABLED(CONFIG_IPV6)
{
.hook = selinux_ipv6_postroute,
.pf = NFPROTO_IPV6,
.hooknum = NF_INET_POST_ROUTING,
.priority = NF_IP6_PRI_SELINUX_LAST,
},
{
.hook = selinux_ipv6_forward,
.pf = NFPROTO_IPV6,
.hooknum = NF_INET_FORWARD,
.priority = NF_IP6_PRI_SELINUX_FIRST,
},
{
.hook = selinux_ipv6_output,
.pf = NFPROTO_IPV6,
.hooknum = NF_INET_LOCAL_OUT,
.priority = NF_IP6_PRI_SELINUX_FIRST,
},
#endif /* IPV6 */
};
static int __net_init selinux_nf_register(struct net *net)
{
return nf_register_net_hooks(net, selinux_nf_ops,
ARRAY_SIZE(selinux_nf_ops));
}
static void __net_exit selinux_nf_unregister(struct net *net)
{
nf_unregister_net_hooks(net, selinux_nf_ops,
ARRAY_SIZE(selinux_nf_ops));
}
static struct pernet_operations selinux_net_ops = {
.init = selinux_nf_register,
.exit = selinux_nf_unregister,
};
static int __init selinux_nf_ip_init(void)
{
int err;
if (!selinux_enabled)
return 0;
pr_debug("SELinux: Registering netfilter hooks\n");
err = register_pernet_subsys(&selinux_net_ops);
if (err)
panic("SELinux: register_pernet_subsys: error %d\n", err);
return 0;
}
__initcall(selinux_nf_ip_init);
#ifdef CONFIG_SECURITY_SELINUX_DISABLE
static void selinux_nf_ip_exit(void)
{
pr_debug("SELinux: Unregistering netfilter hooks\n");
unregister_pernet_subsys(&selinux_net_ops);
}
#endif
#else /* CONFIG_NETFILTER */
#ifdef CONFIG_SECURITY_SELINUX_DISABLE
#define selinux_nf_ip_exit()
#endif
#endif /* CONFIG_NETFILTER */
#ifdef CONFIG_SECURITY_SELINUX_DISABLE
int selinux_disable(struct selinux_state *state)
{
if (state->initialized) {
/* Not permitted after initial policy load. */
return -EINVAL;
}
if (state->disabled) {
/* Only do this once. */
return -EINVAL;
}
state->disabled = 1;
pr_info("SELinux: Disabled at runtime.\n");
selinux_enabled = 0;
security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
/* Try to destroy the avc node cache */
avc_disable();
/* Unregister netfilter hooks. */
selinux_nf_ip_exit();
/* Unregister selinuxfs. */
exit_sel_fs();
return 0;
}
#endif