// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2012-2021, The Linux Foundation. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "adsprpc_compat.h" #include "adsprpc_shared.h" #include #include #include #include #include #include #define CREATE_TRACE_POINTS #include #define TZ_PIL_PROTECT_MEM_SUBSYS_ID 0x0C #define TZ_PIL_CLEAR_PROTECT_MEM_SUBSYS_ID 0x0D #define TZ_PIL_AUTH_QDSP6_PROC 1 #define ADSP_MMAP_HEAP_ADDR 4 #define ADSP_MMAP_REMOTE_HEAP_ADDR 8 #define ADSP_MMAP_ADD_PAGES 0x1000 #define ADSP_MMAP_ADD_PAGES_LLC 0x3000 #define FASTRPC_DMAHANDLE_NOMAP (16) #define FASTRPC_ENOSUCH 39 #define VMID_SSC_Q6 5 #define VMID_ADSP_Q6 6 #define DEBUGFS_SIZE 3072 #define UL_SIZE 25 #define PID_SIZE 10 #define AUDIO_PDR_SERVICE_LOCATION_CLIENT_NAME "audio_pdr_adsprpc" #define AUDIO_PDR_ADSP_SERVICE_NAME "avs/audio" #define ADSP_AUDIOPD_NAME "msm/adsp/audio_pd" #define SENSORS_PDR_ADSP_SERVICE_LOCATION_CLIENT_NAME "sensors_pdr_adsprpc" #define SENSORS_PDR_ADSP_SERVICE_NAME "tms/servreg" #define ADSP_SENSORPD_NAME "msm/adsp/sensor_pd" #define SENSORS_PDR_SLPI_SERVICE_LOCATION_CLIENT_NAME "sensors_pdr_sdsprpc" #define SENSORS_PDR_SLPI_SERVICE_NAME SENSORS_PDR_ADSP_SERVICE_NAME #define SLPI_SENSORPD_NAME "msm/slpi/sensor_pd" #define FASTRPC_SECURE_WAKE_SOURCE_CLIENT_NAME "adsprpc-secure" #define FASTRPC_NON_SECURE_WAKE_SOURCE_CLIENT_NAME "adsprpc-non_secure" #define RPC_TIMEOUT (5 * HZ) #define BALIGN 128 #define NUM_CHANNELS 4 /* adsp, mdsp, slpi, cdsp*/ #define NUM_SESSIONS 9 /*8 compute, 1 cpz*/ #define M_FDLIST (16) #define M_CRCLIST (64) #define SESSION_ID_INDEX (30) #define FASTRPC_CTX_MAGIC (0xbeeddeed) #define FASTRPC_CTX_MAX (256) #define FASTRPC_CTXID_MASK (0xFF0) #define NUM_DEVICES 2 /* adsprpc-smd, adsprpc-smd-secure */ #define MINOR_NUM_DEV 0 #define MINOR_NUM_SECURE_DEV 1 #define NON_SECURE_CHANNEL 0 #define SECURE_CHANNEL 1 #define IS_CACHE_ALIGNED(x) (((x) & ((L1_CACHE_BYTES)-1)) == 0) #ifndef ION_FLAG_CACHED #define ION_FLAG_CACHED (1) #endif #define ADSP_DOMAIN_ID (0) #define MDSP_DOMAIN_ID (1) #define SDSP_DOMAIN_ID (2) #define CDSP_DOMAIN_ID (3) /* ctxid of every message is OR-ed with fl->pd (0/1/2) before */ /* it is sent to DSP. So mask 2 LSBs to retrieve actual context */ #define CONTEXT_PD_CHECK (3) #define RH_CID ADSP_DOMAIN_ID #define PERF_KEYS \ "count:flush:map:copy:rpmsg:getargs:putargs:invalidate:invoke" #define FASTRPC_STATIC_HANDLE_PROCESS_GROUP (1) #define FASTRPC_STATIC_HANDLE_DSP_UTILITIES (2) #define FASTRPC_STATIC_HANDLE_LISTENER (3) #define FASTRPC_STATIC_HANDLE_MAX (20) #define FASTRPC_LATENCY_CTRL_ENB (1) /* Maximum PM timeout that can be voted through fastrpc*/ #define MAX_PM_TIMEOUT_MS 50 /* timeout in us for busy polling after early response from remote processor */ #define FASTRPC_POLL_TIME (4000) /* timeout in us for polling without preempt */ #define FASTRPC_POLL_TIME_WITHOUT_PREEMPT (500) /* timeout in us for polling completion signal after user early hint */ #define FASTRPC_USER_EARLY_HINT_TIMEOUT (500) /* Early wake up poll completion number received from remote processor */ #define FASTRPC_EARLY_WAKEUP_POLL (0xabbccdde) /* latency in us, early wake up signal used below this value */ #define FASTRPC_EARLY_WAKEUP_LATENCY (200) /* response version number */ #define FASTRPC_RSP_VERSION2 (2) /* CPU feature information to DSP */ #define FASTRPC_CPUINFO_DEFAULT (0) #define FASTRPC_CPUINFO_EARLY_WAKEUP (1) #define INIT_FILELEN_MAX (2*1024*1024) #define INIT_MEMLEN_MAX (8*1024*1024) #define MAX_CACHE_BUF_SIZE (8*1024*1024) /* FastRPC remote subsystem state*/ enum fastrpc_remote_subsys_state { SUBSYSTEM_RESTARTING = 0, SUBSYSTEM_DOWN, SUBSYSTEM_UP, }; #define PERF_END (void)0 #define PERF(enb, cnt, ff) \ {\ struct timespec64 startT = {0};\ int64_t *counter = cnt;\ if (enb && counter) {\ ktime_get_real_ts64(&startT);\ } \ ff ;\ if (enb && counter) {\ *counter += getnstimediff(&startT);\ } \ } #define GET_COUNTER(perf_ptr, offset) \ (perf_ptr != NULL ?\ (((offset >= 0) && (offset < PERF_KEY_MAX)) ?\ (int64_t *)(perf_ptr + offset)\ : (int64_t *)NULL) : (int64_t *)NULL) #define FASTRPC_GLINK_LOG_PAGES 8 #define LOG_FASTRPC_GLINK_MSG(ctx, x, ...) \ do { \ if (ctx) \ ipc_log_string(ctx, "%s (%d, %d): "x, \ current->comm, current->tgid, current->pid, \ ##__VA_ARGS__); \ } while (0) static int fastrpc_pdr_notifier_cb(struct notifier_block *nb, unsigned long code, void *data); static struct dentry *debugfs_root; static struct dentry *debugfs_global_file; static inline void mem_barrier(void) { __asm__ __volatile__("dmb sy":::"memory"); } static inline uint64_t buf_page_start(uint64_t buf) { uint64_t start = (uint64_t) buf & PAGE_MASK; return start; } static inline uint64_t buf_page_offset(uint64_t buf) { uint64_t offset = (uint64_t) buf & (PAGE_SIZE - 1); return offset; } static inline uint64_t buf_num_pages(uint64_t buf, size_t len) { uint64_t start = buf_page_start(buf) >> PAGE_SHIFT; uint64_t end = (((uint64_t) buf + len - 1) & PAGE_MASK) >> PAGE_SHIFT; uint64_t nPages = end - start + 1; return nPages; } static inline uint64_t buf_page_size(uint32_t size) { uint64_t sz = (size + (PAGE_SIZE - 1)) & PAGE_MASK; return sz > PAGE_SIZE ? sz : PAGE_SIZE; } static inline void *uint64_to_ptr(uint64_t addr) { void *ptr = (void *)((uintptr_t)addr); return ptr; } static inline uint64_t ptr_to_uint64(void *ptr) { uint64_t addr = (uint64_t)((uintptr_t)ptr); return addr; } struct secure_vm { int *vmid; int *vmperm; int vmcount; }; struct qos_cores { int *coreno; int corecount; }; struct fastrpc_file; struct fastrpc_buf { struct hlist_node hn; struct hlist_node hn_rem; struct fastrpc_file *fl; void *virt; uint64_t phys; size_t size; unsigned long dma_attr; uintptr_t raddr; uint32_t flags; int remote; }; struct fastrpc_ctx_lst; struct overlap { uintptr_t start; uintptr_t end; int raix; uintptr_t mstart; uintptr_t mend; uintptr_t offset; int do_cmo; /*used for cache maintenance of inrout buffers*/ }; struct smq_invoke_ctx { struct hlist_node hn; struct completion work; int retval; int pid; int tgid; remote_arg_t *lpra; remote_arg64_t *rpra; remote_arg64_t *lrpra; /* Local copy of rpra for put_args */ int *fds; unsigned int *attrs; struct fastrpc_mmap **maps; struct fastrpc_buf *buf; size_t used; struct fastrpc_file *fl; uint32_t handle; uint32_t sc; struct overlap *overs; struct overlap **overps; struct smq_msg msg; uint32_t *crc; unsigned int magic; uint64_t ctxid; /* response flags from remote processor */ enum fastrpc_response_flags rspFlags; /* user hint of completion time in us */ uint32_t earlyWakeTime; /* work done status flag */ bool isWorkDone; }; struct fastrpc_ctx_lst { struct hlist_head pending; struct hlist_head interrupted; }; struct fastrpc_smmu { struct device *dev; const char *dev_name; int cb; int enabled; int faults; int secure; int coherent; }; struct fastrpc_session_ctx { struct device *dev; struct fastrpc_smmu smmu; int used; }; struct fastrpc_static_pd { char *servloc_name; char *spdname; struct notifier_block pdrnb; struct notifier_block get_service_nb; void *pdrhandle; uint64_t pdrcount; uint64_t prevpdrcount; int ispdup; int cid; }; struct fastrpc_dsp_capabilities { uint32_t is_cached; //! Flag if dsp attributes are cached uint32_t dsp_attributes[FASTRPC_MAX_DSP_ATTRIBUTES]; }; struct fastrpc_channel_ctx { char *name; char *subsys; struct rpmsg_device *rpdev; struct device *dev; struct fastrpc_session_ctx session[NUM_SESSIONS]; struct fastrpc_static_pd spd[NUM_SESSIONS]; struct completion work; struct completion workport; struct notifier_block nb; struct mutex smd_mutex; struct mutex rpmsg_mutex; uint64_t sesscount; uint64_t ssrcount; void *handle; uint64_t prevssrcount; int subsystemstate; int vmid; struct secure_vm rhvm; int ramdumpenabled; void *rh_dump_dev; /* Indicates, if channel is restricted to secure node only */ int secure; /* Indicates whether the channel supports unsigned PD */ bool unsigned_support; struct fastrpc_dsp_capabilities dsp_cap_kernel; void *ipc_log_ctx; /* cpu capabilities shared to DSP */ uint64_t cpuinfo_todsp; bool cpuinfo_status; struct smq_invoke_ctx *ctxtable[FASTRPC_CTX_MAX]; spinlock_t ctxlock; }; struct fastrpc_apps { struct fastrpc_channel_ctx *channel; struct cdev cdev; struct class *class; struct smq_phy_page range; struct hlist_head maps; uint32_t staticpd_flags; dev_t dev_no; int compat; struct hlist_head drivers; spinlock_t hlock; struct device *dev; unsigned int latency; int rpmsg_register; bool legacy_remote_heap; /* Unique job id for each message */ uint64_t jobid[NUM_CHANNELS]; struct device *secure_dev; struct device *non_secure_dev; /* Secure subsystems like ADSP/SLPI will use secure client */ struct wakeup_source *wake_source_secure; /* Non-secure subsystem like CDSP will use regular client */ struct wakeup_source *wake_source; struct qos_cores silvercores; uint32_t max_size_limit; void *ramdump_handle; bool enable_ramdump; }; struct fastrpc_mmap { struct hlist_node hn; struct fastrpc_file *fl; struct fastrpc_apps *apps; int fd; uint32_t flags; struct dma_buf *buf; struct sg_table *table; struct dma_buf_attachment *attach; struct ion_handle *handle; uint64_t phys; size_t size; uintptr_t va; size_t len; int refs; uintptr_t raddr; int uncached; int secure; uintptr_t attr; bool is_filemap; /* flag to indicate map used in process init */ unsigned int ctx_refs; /* Indicates reference count for context map */ /* Map in use for dma handle */ unsigned int dma_handle_refs; }; enum fastrpc_perfkeys { PERF_COUNT = 0, PERF_FLUSH = 1, PERF_MAP = 2, PERF_COPY = 3, PERF_LINK = 4, PERF_GETARGS = 5, PERF_PUTARGS = 6, PERF_INVARGS = 7, PERF_INVOKE = 8, PERF_KEY_MAX = 9, }; struct fastrpc_perf { int64_t count; int64_t flush; int64_t map; int64_t copy; int64_t link; int64_t getargs; int64_t putargs; int64_t invargs; int64_t invoke; int64_t tid; struct hlist_node hn; }; struct fastrpc_file { struct hlist_node hn; spinlock_t hlock; struct hlist_head maps; struct hlist_head cached_bufs; struct hlist_head remote_bufs; struct fastrpc_ctx_lst clst; struct fastrpc_session_ctx *sctx; struct fastrpc_buf *init_mem; struct fastrpc_session_ctx *secsctx; uint32_t mode; uint32_t profile; int sessionid; int tgid; int cid; uint64_t ssrcount; int pd; char *servloc_name; int file_close; int dsp_proc_init; struct fastrpc_apps *apps; struct hlist_head perf; struct dentry *debugfs_file; struct mutex perf_mutex; struct pm_qos_request pm_qos_req; int qos_request; struct mutex pm_qos_mutex; struct mutex map_mutex; struct mutex internal_map_mutex; /* Identifies the device (MINOR_NUM_DEV / MINOR_NUM_SECURE_DEV) */ int dev_minor; char *debug_buf; /* Flag to enable PM wake/relax voting for every remote invoke */ int wake_enable; uint32_t ws_timeout; /* To indicate attempt has been made to allocate memory for debug_buf */ int debug_buf_alloced_attempted; /* Flag to indicate dynamic process creation status*/ enum fastrpc_process_create_state dsp_process_state; struct completion shutdown; }; static struct fastrpc_apps gfa; static struct fastrpc_channel_ctx gcinfo[NUM_CHANNELS] = { { .name = "adsprpc-smd", .subsys = "adsp", .spd = { { .servloc_name = AUDIO_PDR_SERVICE_LOCATION_CLIENT_NAME, .spdname = ADSP_AUDIOPD_NAME, .pdrnb.notifier_call = fastrpc_pdr_notifier_cb, .cid = ADSP_DOMAIN_ID, }, { .servloc_name = SENSORS_PDR_ADSP_SERVICE_LOCATION_CLIENT_NAME, .spdname = ADSP_SENSORPD_NAME, .pdrnb.notifier_call = fastrpc_pdr_notifier_cb, .cid = ADSP_DOMAIN_ID, } }, .cpuinfo_todsp = FASTRPC_CPUINFO_DEFAULT, .cpuinfo_status = false, }, { .name = "mdsprpc-smd", .subsys = "modem", .spd = { { .cid = MDSP_DOMAIN_ID, } }, .cpuinfo_todsp = FASTRPC_CPUINFO_DEFAULT, .cpuinfo_status = false, }, { .name = "sdsprpc-smd", .subsys = "slpi", .spd = { { .servloc_name = SENSORS_PDR_SLPI_SERVICE_LOCATION_CLIENT_NAME, .spdname = SLPI_SENSORPD_NAME, .pdrnb.notifier_call = fastrpc_pdr_notifier_cb, .cid = SDSP_DOMAIN_ID, } }, .cpuinfo_todsp = FASTRPC_CPUINFO_DEFAULT, .cpuinfo_status = false, }, { .name = "cdsprpc-smd", .subsys = "cdsp", .spd = { { .cid = CDSP_DOMAIN_ID, } }, .cpuinfo_todsp = FASTRPC_CPUINFO_EARLY_WAKEUP, .cpuinfo_status = false, }, }; static int hlosvm[1] = {VMID_HLOS}; static int hlosvmperm[1] = {PERM_READ | PERM_WRITE | PERM_EXEC}; static void fastrpc_pm_awake(struct fastrpc_file *fl, int channel_type); static inline int64_t getnstimediff(struct timespec64 *start) { int64_t ns; struct timespec64 ts, b; ktime_get_real_ts64(&ts); b = timespec64_sub(ts, *start); ns = timespec64_to_ns(&b); return ns; } static inline int64_t *getperfcounter(struct fastrpc_file *fl, int key) { int err = 0; int64_t *val = NULL; struct fastrpc_perf *perf = NULL, *fperf = NULL; struct hlist_node *n = NULL; VERIFY(err, !IS_ERR_OR_NULL(fl)); if (err) goto bail; mutex_lock(&fl->perf_mutex); hlist_for_each_entry_safe(perf, n, &fl->perf, hn) { if (perf->tid == current->pid) { fperf = perf; break; } } if (IS_ERR_OR_NULL(fperf)) { fperf = kzalloc(sizeof(*fperf), GFP_KERNEL); VERIFY(err, !IS_ERR_OR_NULL(fperf)); if (err) { mutex_unlock(&fl->perf_mutex); kfree(fperf); goto bail; } fperf->tid = current->pid; hlist_add_head(&fperf->hn, &fl->perf); } val = ((int64_t *)fperf) + key; mutex_unlock(&fl->perf_mutex); bail: return val; } static inline int poll_on_early_response(struct smq_invoke_ctx *ctx) { int ii, jj, err = -EIO; uint32_t sc = ctx->sc; struct smq_invoke_buf *list; struct smq_phy_page *pages; uint64_t *fdlist; uint32_t *crclist, *poll; unsigned int inbufs, outbufs, handles; /* calculate poll memory location */ inbufs = REMOTE_SCALARS_INBUFS(sc); outbufs = REMOTE_SCALARS_OUTBUFS(sc); handles = REMOTE_SCALARS_INHANDLES(sc) + REMOTE_SCALARS_OUTHANDLES(sc); list = smq_invoke_buf_start(ctx->rpra, sc); pages = smq_phy_page_start(sc, list); fdlist = (uint64_t *)(pages + inbufs + outbufs + handles); crclist = (uint32_t *)(fdlist + M_FDLIST); poll = (uint32_t *)(crclist + M_CRCLIST); /* * poll on memory for actual completion after receiving * early response from DSP. Return failure on timeout. */ preempt_disable(); for (ii = 0, jj = 0; ii < FASTRPC_POLL_TIME; ii++, jj++) { if (*poll == FASTRPC_EARLY_WAKEUP_POLL) { err = 0; break; } if (jj == FASTRPC_POLL_TIME_WITHOUT_PREEMPT) { /* limit preempt disable time with no rescheduling */ preempt_enable(); mem_barrier(); preempt_disable(); jj = 0; } udelay(1); } preempt_enable_no_resched(); return err; } static void fastrpc_buf_free(struct fastrpc_buf *buf, int cache) { struct fastrpc_file *fl = buf == NULL ? NULL : buf->fl; int vmid, err = 0, cid = -1; if (!fl) return; if (cache && buf->size < MAX_CACHE_BUF_SIZE) { spin_lock(&fl->hlock); hlist_add_head(&buf->hn, &fl->cached_bufs); spin_unlock(&fl->hlock); return; } if (buf->remote) { spin_lock(&fl->hlock); hlist_del_init(&buf->hn_rem); spin_unlock(&fl->hlock); buf->remote = 0; buf->raddr = 0; } if (!IS_ERR_OR_NULL(buf->virt)) { int destVM[1] = {VMID_HLOS}; int destVMperm[1] = {PERM_READ | PERM_WRITE | PERM_EXEC}; VERIFY(err, fl->sctx != NULL); if (err) goto bail; if (fl->sctx->smmu.cb) buf->phys &= ~((uint64_t)fl->sctx->smmu.cb << 32); cid = fl->cid; VERIFY(err, cid >= ADSP_DOMAIN_ID && cid < NUM_CHANNELS); if (err) { err = -ECHRNG; pr_err("invalid channel 0x%zx set for session\n", cid); goto bail; } vmid = fl->apps->channel[cid].vmid; if (vmid) { int srcVM[2] = {VMID_HLOS, vmid}; hyp_assign_phys(buf->phys, buf_page_size(buf->size), srcVM, 2, destVM, destVMperm, 1); } trace_fastrpc_dma_free(cid, buf->phys, buf->size); dma_free_attrs(fl->sctx->smmu.dev, buf->size, buf->virt, buf->phys, buf->dma_attr); } bail: kfree(buf); } static void fastrpc_cached_buf_list_free(struct fastrpc_file *fl) { struct fastrpc_buf *buf, *free; do { struct hlist_node *n; free = NULL; spin_lock(&fl->hlock); hlist_for_each_entry_safe(buf, n, &fl->cached_bufs, hn) { hlist_del_init(&buf->hn); free = buf; break; } spin_unlock(&fl->hlock); if (free) fastrpc_buf_free(free, 0); } while (free); } static void fastrpc_remote_buf_list_free(struct fastrpc_file *fl) { struct fastrpc_buf *buf, *free; do { struct hlist_node *n; free = NULL; spin_lock(&fl->hlock); hlist_for_each_entry_safe(buf, n, &fl->remote_bufs, hn_rem) { free = buf; break; } spin_unlock(&fl->hlock); if (free) fastrpc_buf_free(free, 0); } while (free); } static void fastrpc_mmap_add_global(struct fastrpc_mmap *map) { struct fastrpc_apps *me = &gfa; unsigned long irq_flags = 0; spin_lock_irqsave(&me->hlock, irq_flags); hlist_add_head(&map->hn, &me->maps); spin_unlock_irqrestore(&me->hlock, irq_flags); } static void fastrpc_mmap_add(struct fastrpc_mmap *map) { struct fastrpc_file *fl = map->fl; hlist_add_head(&map->hn, &fl->maps); } static int fastrpc_mmap_find(struct fastrpc_file *fl, int fd, uintptr_t va, size_t len, int mflags, int refs, struct fastrpc_mmap **ppmap) { struct fastrpc_mmap *match = NULL, *map = NULL; struct hlist_node *n; if ((va + len) < va) return -EOVERFLOW; hlist_for_each_entry_safe(map, n, &fl->maps, hn) { if (va >= map->va && va + len <= map->va + map->len && map->fd == fd) { if (refs) { if (map->refs + 1 == INT_MAX) return -ETOOMANYREFS; map->refs++; } match = map; break; } } if (match) { *ppmap = match; return 0; } return -ENOTTY; } static int dma_alloc_memory(dma_addr_t *region_phys, void **vaddr, size_t size, unsigned long dma_attr) { int err = 0; struct fastrpc_apps *me = &gfa; if (me->dev == NULL) { pr_err("device adsprpc-mem is not initialized\n"); return -ENODEV; } VERIFY(err, size > 0 && size < me->max_size_limit); if (err) { err = -EFAULT; pr_err("adsprpc: %s: invalid allocation size 0x%zx\n", __func__, size); return err; } *vaddr = dma_alloc_attrs(me->dev, size, region_phys, GFP_KERNEL, dma_attr); if (IS_ERR_OR_NULL(*vaddr)) { pr_err("adsprpc: %s: %s: dma_alloc_attrs failed for size 0x%zx, returned %pK\n", current->comm, __func__, size, (*vaddr)); return -ENOMEM; } return 0; } static int fastrpc_mmap_remove(struct fastrpc_file *fl, uintptr_t va, size_t len, struct fastrpc_mmap **ppmap) { struct fastrpc_mmap *match = NULL, *map; struct hlist_node *n; struct fastrpc_apps *me = &gfa; spin_lock(&me->hlock); hlist_for_each_entry_safe(map, n, &me->maps, hn) { if (map->refs == 1 && map->raddr == va && map->raddr + map->len == va + len && /* Remove map if not used in process initialization */ !map->is_filemap) { match = map; hlist_del_init(&map->hn); break; } } spin_unlock(&me->hlock); if (match) { *ppmap = match; return 0; } hlist_for_each_entry_safe(map, n, &fl->maps, hn) { /* Remove if only one reference map and no context map */ if (map->refs == 1 && !map->ctx_refs && map->raddr == va && map->raddr + map->len == va + len && /* Remove map only if it isn't being used by DSP */ !map->dma_handle_refs && /* Remove map if not used in process initialization */ !map->is_filemap) { match = map; hlist_del_init(&map->hn); break; } } if (match) { *ppmap = match; return 0; } return -ENOTTY; } static void fastrpc_mmap_free(struct fastrpc_mmap *map, uint32_t flags) { struct fastrpc_apps *me = &gfa; struct fastrpc_file *fl; int vmid, cid = -1, err = 0; struct fastrpc_session_ctx *sess; if (!map) return; fl = map->fl; if (fl && !(map->flags == ADSP_MMAP_HEAP_ADDR || map->flags == ADSP_MMAP_REMOTE_HEAP_ADDR)) { cid = fl->cid; VERIFY(err, cid >= ADSP_DOMAIN_ID && cid < NUM_CHANNELS); if (err) { err = -ECHRNG; pr_err("adsprpc: ERROR:%s, Invalid channel id: %d, err:%d\n", __func__, cid, err); return; } } if (map->flags == ADSP_MMAP_HEAP_ADDR || map->flags == ADSP_MMAP_REMOTE_HEAP_ADDR) { spin_lock(&me->hlock); if (map->refs) map->refs--; if (!map->refs) hlist_del_init(&map->hn); if (map->refs > 0) { spin_unlock(&me->hlock); return; } spin_unlock(&me->hlock); } else { if (map->refs) map->refs--; /* flags is passed as 1 during fastrpc_file_free * (ie process exit), so that maps will be cleared * even though references are present. */ if (!map->refs && !map->ctx_refs && !map->dma_handle_refs) hlist_del_init(&map->hn); if (map->refs > 0 && !flags) return; } if (map->flags == ADSP_MMAP_HEAP_ADDR || map->flags == ADSP_MMAP_REMOTE_HEAP_ADDR) { if (me->dev == NULL) { pr_err("adsprpc: %s: %s: failed to free remote heap allocation\n", current->comm, __func__); return; } trace_fastrpc_dma_free(-1, map->phys, map->size); if (map->phys) { dma_free_attrs(me->dev, map->size, (void *)map->va, (dma_addr_t)map->phys, (unsigned long)map->attr); } } else if (map->flags == FASTRPC_DMAHANDLE_NOMAP) { trace_fastrpc_dma_unmap(cid, map->phys, map->size); if (!IS_ERR_OR_NULL(map->table)) dma_buf_unmap_attachment(map->attach, map->table, DMA_BIDIRECTIONAL); if (!IS_ERR_OR_NULL(map->attach)) dma_buf_detach(map->buf, map->attach); if (!IS_ERR_OR_NULL(map->buf)) dma_buf_put(map->buf); } else { int destVM[1] = {VMID_HLOS}; int destVMperm[1] = {PERM_READ | PERM_WRITE | PERM_EXEC}; if (map->secure) sess = fl->secsctx; else sess = fl->sctx; vmid = fl->apps->channel[cid].vmid; if (vmid && map->phys) { int srcVM[2] = {VMID_HLOS, vmid}; hyp_assign_phys(map->phys, buf_page_size(map->size), srcVM, 2, destVM, destVMperm, 1); } trace_fastrpc_dma_unmap(cid, map->phys, map->size); if (!IS_ERR_OR_NULL(map->table)) dma_buf_unmap_attachment(map->attach, map->table, DMA_BIDIRECTIONAL); if (!IS_ERR_OR_NULL(map->attach)) dma_buf_detach(map->buf, map->attach); if (!IS_ERR_OR_NULL(map->buf)) dma_buf_put(map->buf); } kfree(map); } static int fastrpc_session_alloc(struct fastrpc_channel_ctx *chan, int secure, struct fastrpc_session_ctx **session); static int fastrpc_mmap_create(struct fastrpc_file *fl, int fd, unsigned int attr, uintptr_t va, size_t len, int mflags, struct fastrpc_mmap **ppmap) { struct fastrpc_apps *me = &gfa; struct fastrpc_session_ctx *sess; struct fastrpc_apps *apps = fl->apps; int cid = -1; struct fastrpc_channel_ctx *chan = NULL; struct fastrpc_mmap *map = NULL; dma_addr_t region_phys = 0; void *region_vaddr = NULL; unsigned long flags; int err = 0, vmid, sgl_index = 0; struct scatterlist *sgl = NULL; if (!fl) { err = -EBADF; goto bail; } cid = fl->cid; VERIFY(err, cid >= ADSP_DOMAIN_ID && cid < NUM_CHANNELS); if (err) goto bail; chan = &apps->channel[cid]; if (!fastrpc_mmap_find(fl, fd, va, len, mflags, 1, ppmap)) return 0; map = kzalloc(sizeof(*map), GFP_KERNEL); VERIFY(err, !IS_ERR_OR_NULL(map)); if (err) goto bail; INIT_HLIST_NODE(&map->hn); map->flags = mflags; map->refs = 1; map->fl = fl; map->fd = fd; map->attr = attr; map->is_filemap = false; map->ctx_refs = 0; if (mflags == ADSP_MMAP_HEAP_ADDR || mflags == ADSP_MMAP_REMOTE_HEAP_ADDR) { map->apps = me; map->fl = NULL; map->attr |= DMA_ATTR_SKIP_ZEROING | DMA_ATTR_NO_KERNEL_MAPPING; VERIFY(err, !dma_alloc_memory(®ion_phys, ®ion_vaddr, len, (unsigned long) map->attr)); if (err) goto bail; trace_fastrpc_dma_alloc(fl->cid, (uint64_t)region_phys, len, (unsigned long)map->attr, mflags); map->phys = (uintptr_t)region_phys; map->size = len; map->va = (uintptr_t)region_vaddr; } else if (mflags == FASTRPC_DMAHANDLE_NOMAP) { if (map->attr & FASTRPC_ATTR_KEEP_MAP) { pr_err("adsprpc: %s: Invalid attribute 0x%x for fd %d\n", __func__, map->attr, fd); err = -EINVAL; goto bail; } VERIFY(err, !IS_ERR_OR_NULL(map->buf = dma_buf_get(fd))); if (err) goto bail; VERIFY(err, !dma_buf_get_flags(map->buf, &flags)); if (err) goto bail; map->secure = flags & ION_FLAG_SECURE; map->uncached = 1; map->va = 0; map->phys = 0; VERIFY(err, !IS_ERR_OR_NULL(map->attach = dma_buf_attach(map->buf, me->dev))); if (err) goto bail; map->attach->dma_map_attrs |= DMA_ATTR_SKIP_CPU_SYNC; VERIFY(err, !IS_ERR_OR_NULL(map->table = dma_buf_map_attachment(map->attach, DMA_BIDIRECTIONAL))); if (err) goto bail; VERIFY(err, map->table->nents == 1); if (err) goto bail; map->phys = sg_dma_address(map->table->sgl); map->size = len; trace_fastrpc_dma_map(cid, fd, map->phys, map->size, len, mflags, map->attach->dma_map_attrs); } else { if (map->attr && (map->attr & FASTRPC_ATTR_KEEP_MAP)) { pr_info("adsprpc: %s: buffer mapped with persist attr 0x%x\n", __func__, (unsigned int)map->attr); map->refs = 2; } VERIFY(err, !IS_ERR_OR_NULL(map->buf = dma_buf_get(fd))); if (err) goto bail; VERIFY(err, !dma_buf_get_flags(map->buf, &flags)); if (err) goto bail; map->secure = flags & ION_FLAG_SECURE; if (map->secure) { if (!fl->secsctx) err = fastrpc_session_alloc(chan, 1, &fl->secsctx); if (err) goto bail; } if (map->secure) sess = fl->secsctx; else sess = fl->sctx; VERIFY(err, !IS_ERR_OR_NULL(sess)); if (err) goto bail; map->uncached = !(flags & ION_FLAG_CACHED); if (map->attr & FASTRPC_ATTR_NOVA && !sess->smmu.coherent) map->uncached = 1; VERIFY(err, !IS_ERR_OR_NULL(map->attach = dma_buf_attach(map->buf, sess->smmu.dev))); if (err) goto bail; map->attach->dma_map_attrs |= DMA_ATTR_DELAYED_UNMAP; map->attach->dma_map_attrs |= DMA_ATTR_EXEC_MAPPING; if (map->attr & FASTRPC_ATTR_NON_COHERENT || (sess->smmu.coherent && map->uncached)) map->attach->dma_map_attrs |= DMA_ATTR_FORCE_NON_COHERENT | DMA_ATTR_SKIP_CPU_SYNC; else if (map->attr & FASTRPC_ATTR_COHERENT) map->attach->dma_map_attrs |= DMA_ATTR_FORCE_COHERENT; /* * Skip CPU sync if IO Cohernecy is not supported * as we flush later */ else if (!sess->smmu.coherent) map->attach->dma_map_attrs |= DMA_ATTR_SKIP_CPU_SYNC; VERIFY(err, !IS_ERR_OR_NULL(map->table = dma_buf_map_attachment(map->attach, DMA_BIDIRECTIONAL))); if (err) goto bail; if (!sess->smmu.enabled) { VERIFY(err, map->table->nents == 1); if (err) goto bail; } map->phys = sg_dma_address(map->table->sgl); if (sess->smmu.cb) { map->phys += ((uint64_t)sess->smmu.cb << 32); for_each_sg(map->table->sgl, sgl, map->table->nents, sgl_index) map->size += sg_dma_len(sgl); } else { map->size = buf_page_size(len); } trace_fastrpc_dma_map(cid, fd, map->phys, map->size, len, mflags, map->attach->dma_map_attrs); VERIFY(err, map->size >= len && map->size < me->max_size_limit); if (err) { err = -EFAULT; pr_err("adsprpc: %s: invalid map size 0x%zx len 0x%zx\n", __func__, map->size, len); goto bail; } vmid = fl->apps->channel[cid].vmid; if (!sess->smmu.enabled && !vmid) { VERIFY(err, map->phys >= me->range.addr && map->phys + map->size <= me->range.addr + me->range.size); if (err) { pr_err("adsprpc: %s: phys addr 0x%llx (size 0x%zx) out of CMA heap range\n", __func__, map->phys, map->size); goto bail; } } if (vmid) { int srcVM[1] = {VMID_HLOS}; int destVM[2] = {VMID_HLOS, vmid}; int destVMperm[2] = {PERM_READ | PERM_WRITE, PERM_READ | PERM_WRITE | PERM_EXEC}; err = hyp_assign_phys(map->phys, buf_page_size(map->size), srcVM, 1, destVM, destVMperm, 2); if (err) goto bail; } map->va = va; } map->len = len; if ((mflags != ADSP_MMAP_HEAP_ADDR) && (mflags != ADSP_MMAP_REMOTE_HEAP_ADDR)) fastrpc_mmap_add(map); *ppmap = map; bail: if (err && map) fastrpc_mmap_free(map, 0); return err; } static int fastrpc_buf_alloc(struct fastrpc_file *fl, size_t size, unsigned long dma_attr, uint32_t rflags, int remote, struct fastrpc_buf **obuf) { int err = 0, vmid; struct fastrpc_apps *me = &gfa; struct fastrpc_buf *buf = NULL, *fr = NULL; struct hlist_node *n; int cid = -1; cid = fl->cid; VERIFY(err, cid >= ADSP_DOMAIN_ID && cid < NUM_CHANNELS); if (err) { err = -ECHRNG; goto bail; } VERIFY(err, size > 0 && size < me->max_size_limit); if (err) { err = -EFAULT; pr_err("adsprpc: %s: invalid allocation size 0x%zx\n", __func__, size); goto bail; } if (!remote) { /* find the smallest buffer that fits in the cache */ spin_lock(&fl->hlock); hlist_for_each_entry_safe(buf, n, &fl->cached_bufs, hn) { if (buf->size >= size && (!fr || fr->size > buf->size)) fr = buf; } if (fr) hlist_del_init(&fr->hn); spin_unlock(&fl->hlock); if (fr) { *obuf = fr; return 0; } } buf = NULL; VERIFY(err, NULL != (buf = kzalloc(sizeof(*buf), GFP_KERNEL))); if (err) goto bail; INIT_HLIST_NODE(&buf->hn); buf->fl = fl; buf->virt = NULL; buf->phys = 0; buf->size = size; buf->dma_attr = dma_attr; buf->flags = rflags; buf->raddr = 0; buf->remote = 0; VERIFY(err, fl && fl->sctx != NULL); if (err) { err = -EBADR; goto bail; } buf->virt = dma_alloc_attrs(fl->sctx->smmu.dev, buf->size, (dma_addr_t *)&buf->phys, GFP_KERNEL, buf->dma_attr); if (IS_ERR_OR_NULL(buf->virt)) { /* free cache and retry */ fastrpc_cached_buf_list_free(fl); buf->virt = dma_alloc_attrs(fl->sctx->smmu.dev, buf->size, (dma_addr_t *)&buf->phys, GFP_KERNEL, buf->dma_attr); VERIFY(err, !IS_ERR_OR_NULL(buf->virt)); } if (err) { err = ENOMEM; pr_err("adsprpc: %s: %s: dma_alloc_attrs failed for size 0x%zx, returned %pK\n", current->comm, __func__, size, buf->virt); goto bail; } if (fl->sctx->smmu.cb) buf->phys += ((uint64_t)fl->sctx->smmu.cb << 32); trace_fastrpc_dma_alloc(cid, buf->phys, size, dma_attr, (int)rflags); vmid = fl->apps->channel[cid].vmid; if (vmid) { int srcVM[1] = {VMID_HLOS}; int destVM[2] = {VMID_HLOS, vmid}; int destVMperm[2] = {PERM_READ | PERM_WRITE, PERM_READ | PERM_WRITE | PERM_EXEC}; err = hyp_assign_phys(buf->phys, buf_page_size(size), srcVM, 1, destVM, destVMperm, 2); if (err) goto bail; } if (remote) { INIT_HLIST_NODE(&buf->hn_rem); spin_lock(&fl->hlock); hlist_add_head(&buf->hn_rem, &fl->remote_bufs); spin_unlock(&fl->hlock); buf->remote = remote; } *obuf = buf; bail: if (err && buf) fastrpc_buf_free(buf, 0); return err; } static int context_restore_interrupted(struct fastrpc_file *fl, struct fastrpc_ioctl_invoke_crc *inv, struct smq_invoke_ctx **po) { int err = 0; struct smq_invoke_ctx *ctx = NULL, *ictx = NULL; struct hlist_node *n; struct fastrpc_ioctl_invoke *invoke = &inv->inv; spin_lock(&fl->hlock); hlist_for_each_entry_safe(ictx, n, &fl->clst.interrupted, hn) { if (ictx->pid == current->pid) { if (invoke->sc != ictx->sc || ictx->fl != fl) err = -1; else { ctx = ictx; hlist_del_init(&ctx->hn); hlist_add_head(&ctx->hn, &fl->clst.pending); } break; } } spin_unlock(&fl->hlock); if (ctx) *po = ctx; return err; } #define CMP(aa, bb) ((aa) == (bb) ? 0 : (aa) < (bb) ? -1 : 1) static int overlap_ptr_cmp(const void *a, const void *b) { struct overlap *pa = *((struct overlap **)a); struct overlap *pb = *((struct overlap **)b); /* sort with lowest starting buffer first */ int st = CMP(pa->start, pb->start); /* sort with highest ending buffer first */ int ed = CMP(pb->end, pa->end); return st == 0 ? ed : st; } static int context_build_overlap(struct smq_invoke_ctx *ctx) { int i, err = 0; remote_arg_t *lpra = ctx->lpra; int inbufs = REMOTE_SCALARS_INBUFS(ctx->sc); int outbufs = REMOTE_SCALARS_OUTBUFS(ctx->sc); int nbufs = inbufs + outbufs; struct overlap max; for (i = 0; i < nbufs; ++i) { ctx->overs[i].start = (uintptr_t)lpra[i].buf.pv; ctx->overs[i].end = ctx->overs[i].start + lpra[i].buf.len; if (lpra[i].buf.len) { VERIFY(err, ctx->overs[i].end > ctx->overs[i].start); if (err) goto bail; } ctx->overs[i].raix = i; ctx->overps[i] = &ctx->overs[i]; } sort(ctx->overps, nbufs, sizeof(*ctx->overps), overlap_ptr_cmp, NULL); max.start = 0; max.end = 0; for (i = 0; i < nbufs; ++i) { if (ctx->overps[i]->start < max.end) { ctx->overps[i]->mstart = max.end; ctx->overps[i]->mend = ctx->overps[i]->end; ctx->overps[i]->offset = max.end - ctx->overps[i]->start; if (ctx->overps[i]->end > max.end) { max.end = ctx->overps[i]->end; } else { if ((max.raix < inbufs && ctx->overps[i]->raix + 1 > inbufs) || (ctx->overps[i]->raix < inbufs && max.raix + 1 > inbufs)) ctx->overps[i]->do_cmo = 1; ctx->overps[i]->mend = 0; ctx->overps[i]->mstart = 0; } } else { ctx->overps[i]->mend = ctx->overps[i]->end; ctx->overps[i]->mstart = ctx->overps[i]->start; ctx->overps[i]->offset = 0; max = *ctx->overps[i]; } } bail: return err; } #define K_COPY_FROM_USER(err, kernel, dst, src, size) \ do {\ if (!(kernel))\ VERIFY(err, 0 == copy_from_user((dst),\ (void const __user *)(src),\ (size)));\ else\ memmove((dst), (src), (size));\ } while (0) #define K_COPY_TO_USER(err, kernel, dst, src, size) \ do {\ if (!(kernel))\ VERIFY(err, 0 == copy_to_user((void __user *)(dst),\ (src), (size)));\ else\ memmove((dst), (src), (size));\ } while (0) static void context_free(struct smq_invoke_ctx *ctx); static int context_alloc(struct fastrpc_file *fl, uint32_t kernel, struct fastrpc_ioctl_invoke_crc *invokefd, struct smq_invoke_ctx **po) { struct fastrpc_apps *me = &gfa; int err = 0, bufs, ii, size = 0, cid = -1; struct smq_invoke_ctx *ctx = NULL; struct fastrpc_ctx_lst *clst = &fl->clst; struct fastrpc_ioctl_invoke *invoke = &invokefd->inv; struct fastrpc_channel_ctx *chan = 0; unsigned long irq_flags = 0; bufs = REMOTE_SCALARS_LENGTH(invoke->sc); size = bufs * sizeof(*ctx->lpra) + bufs * sizeof(*ctx->maps) + sizeof(*ctx->fds) * (bufs) + sizeof(*ctx->attrs) * (bufs) + sizeof(*ctx->overs) * (bufs) + sizeof(*ctx->overps) * (bufs); VERIFY(err, NULL != (ctx = kzalloc(sizeof(*ctx) + size, GFP_KERNEL))); if (err) goto bail; INIT_HLIST_NODE(&ctx->hn); hlist_add_fake(&ctx->hn); ctx->fl = fl; ctx->maps = (struct fastrpc_mmap **)(&ctx[1]); ctx->lpra = (remote_arg_t *)(&ctx->maps[bufs]); ctx->fds = (int *)(&ctx->lpra[bufs]); ctx->attrs = (unsigned int *)(&ctx->fds[bufs]); ctx->overs = (struct overlap *)(&ctx->attrs[bufs]); ctx->overps = (struct overlap **)(&ctx->overs[bufs]); K_COPY_FROM_USER(err, kernel, (void *)ctx->lpra, invoke->pra, bufs * sizeof(*ctx->lpra)); if (err) goto bail; if (invokefd->fds) { K_COPY_FROM_USER(err, kernel, ctx->fds, invokefd->fds, bufs * sizeof(*ctx->fds)); if (err) goto bail; } else { ctx->fds = NULL; } if (invokefd->attrs) { K_COPY_FROM_USER(err, kernel, ctx->attrs, invokefd->attrs, bufs * sizeof(*ctx->attrs)); if (err) goto bail; } ctx->crc = (uint32_t *)invokefd->crc; ctx->handle = invoke->handle; ctx->sc = invoke->sc; if (bufs) { VERIFY(err, 0 == context_build_overlap(ctx)); if (err) goto bail; } ctx->retval = 0xDECAF; ctx->pid = current->pid; ctx->tgid = fl->tgid; init_completion(&ctx->work); ctx->magic = FASTRPC_CTX_MAGIC; ctx->rspFlags = NORMAL_RESPONSE; ctx->isWorkDone = false; spin_lock(&fl->hlock); hlist_add_head(&ctx->hn, &clst->pending); if (!(fl->cid >= ADSP_DOMAIN_ID && fl->cid < NUM_CHANNELS)) { err = -ECHRNG; goto bail; } cid = fl->cid; chan = &me->channel[cid]; spin_unlock(&fl->hlock); spin_lock_irqsave(&chan->ctxlock, irq_flags); me->jobid[cid]++; for (ii = 0; ii < FASTRPC_CTX_MAX; ii++) { if (!chan->ctxtable[ii]) { chan->ctxtable[ii] = ctx; ctx->ctxid = (me->jobid[cid] << 12) | (ii << 4); break; } } spin_unlock_irqrestore(&chan->ctxlock, irq_flags); VERIFY(err, ii < FASTRPC_CTX_MAX); if (err) { pr_err("adsprpc: out of context memory\n"); goto bail; } trace_fastrpc_context_alloc((uint64_t)ctx, ctx->ctxid | fl->pd, ctx->handle, ctx->sc); *po = ctx; bail: if (ctx && err) context_free(ctx); return err; } static void context_save_interrupted(struct smq_invoke_ctx *ctx) { struct fastrpc_ctx_lst *clst = &ctx->fl->clst; spin_lock(&ctx->fl->hlock); hlist_del_init(&ctx->hn); hlist_add_head(&ctx->hn, &clst->interrupted); spin_unlock(&ctx->fl->hlock); } static void context_free(struct smq_invoke_ctx *ctx) { int i; struct fastrpc_apps *me = &gfa; int nbufs = REMOTE_SCALARS_INBUFS(ctx->sc) + REMOTE_SCALARS_OUTBUFS(ctx->sc); int cid = ctx->fl->cid; struct fastrpc_channel_ctx *chan = &me->channel[cid]; unsigned long irq_flags = 0; spin_lock_irqsave(&chan->ctxlock, irq_flags); for (i = 0; i < FASTRPC_CTX_MAX; i++) { if (chan->ctxtable[i] == ctx) { chan->ctxtable[i] = NULL; break; } } spin_unlock_irqrestore(&chan->ctxlock, irq_flags); spin_lock(&ctx->fl->hlock); hlist_del_init(&ctx->hn); spin_unlock(&ctx->fl->hlock); mutex_lock(&ctx->fl->map_mutex); for (i = 0; i < nbufs; ++i) { if (ctx->maps[i] && ctx->maps[i]->ctx_refs) ctx->maps[i]->ctx_refs--; fastrpc_mmap_free(ctx->maps[i], 0); } mutex_unlock(&ctx->fl->map_mutex); fastrpc_buf_free(ctx->buf, 1); kfree(ctx->lrpra); ctx->lrpra = NULL; ctx->magic = 0; ctx->ctxid = 0; trace_fastrpc_context_free((uint64_t)ctx, ctx->msg.invoke.header.ctx, ctx->handle, ctx->sc); kfree(ctx); } static void context_notify_user(struct smq_invoke_ctx *ctx, int retval, uint32_t rspFlags, uint32_t earlyWakeTime) { fastrpc_pm_awake(ctx->fl, gcinfo[ctx->fl->cid].secure); ctx->retval = retval; switch (rspFlags) { case NORMAL_RESPONSE: /* normal response with return value */ ctx->retval = retval; ctx->isWorkDone = true; break; case USER_EARLY_SIGNAL: /* user hint of approximate time of completion */ ctx->earlyWakeTime = earlyWakeTime; break; case EARLY_RESPONSE: /* rpc framework early response with return value */ ctx->retval = retval; break; case COMPLETE_SIGNAL: /* rpc framework signal to clear if pending on ctx */ ctx->isWorkDone = true; break; default: break; } ctx->rspFlags = (enum fastrpc_response_flags)rspFlags; trace_fastrpc_context_complete(ctx->fl->cid, (uint64_t)ctx, retval, ctx->msg.invoke.header.ctx, ctx->handle, ctx->sc); complete(&ctx->work); } static void fastrpc_notify_users(struct fastrpc_file *me) { struct smq_invoke_ctx *ictx; struct hlist_node *n; spin_lock(&me->hlock); hlist_for_each_entry_safe(ictx, n, &me->clst.pending, hn) { ictx->isWorkDone = true; trace_fastrpc_context_complete(me->cid, (uint64_t)ictx, ictx->retval, ictx->msg.invoke.header.ctx, ictx->handle, ictx->sc); complete(&ictx->work); } hlist_for_each_entry_safe(ictx, n, &me->clst.interrupted, hn) { ictx->isWorkDone = true; trace_fastrpc_context_complete(me->cid, (uint64_t)ictx, ictx->retval, ictx->msg.invoke.header.ctx, ictx->handle, ictx->sc); complete(&ictx->work); } spin_unlock(&me->hlock); } static void fastrpc_notify_users_staticpd_pdr(struct fastrpc_file *me) { struct smq_invoke_ctx *ictx; struct hlist_node *n; spin_lock(&me->hlock); hlist_for_each_entry_safe(ictx, n, &me->clst.pending, hn) { if (ictx->msg.pid) { ictx->isWorkDone = true; trace_fastrpc_context_complete(me->cid, (uint64_t)ictx, ictx->retval, ictx->msg.invoke.header.ctx, ictx->handle, ictx->sc); complete(&ictx->work); } } hlist_for_each_entry_safe(ictx, n, &me->clst.interrupted, hn) { if (ictx->msg.pid) { ictx->isWorkDone = true; trace_fastrpc_context_complete(me->cid, (uint64_t)ictx, ictx->retval, ictx->msg.invoke.header.ctx, ictx->handle, ictx->sc); complete(&ictx->work); } } spin_unlock(&me->hlock); } static void fastrpc_notify_drivers(struct fastrpc_apps *me, int cid) { struct fastrpc_file *fl; struct hlist_node *n; spin_lock(&me->hlock); hlist_for_each_entry_safe(fl, n, &me->drivers, hn) { if (fl->cid == cid) fastrpc_notify_users(fl); } spin_unlock(&me->hlock); } static void fastrpc_notify_pdr_drivers(struct fastrpc_apps *me, char *servloc_name) { struct fastrpc_file *fl; struct hlist_node *n; spin_lock(&me->hlock); hlist_for_each_entry_safe(fl, n, &me->drivers, hn) { if (fl->servloc_name && !strcmp(servloc_name, fl->servloc_name)) fastrpc_notify_users_staticpd_pdr(fl); } spin_unlock(&me->hlock); } static void context_list_ctor(struct fastrpc_ctx_lst *me) { INIT_HLIST_HEAD(&me->interrupted); INIT_HLIST_HEAD(&me->pending); } static void fastrpc_context_list_dtor(struct fastrpc_file *fl) { struct fastrpc_ctx_lst *clst = &fl->clst; struct smq_invoke_ctx *ictx = NULL, *ctxfree; struct hlist_node *n; do { ctxfree = NULL; spin_lock(&fl->hlock); hlist_for_each_entry_safe(ictx, n, &clst->interrupted, hn) { hlist_del_init(&ictx->hn); ctxfree = ictx; break; } spin_unlock(&fl->hlock); if (ctxfree) context_free(ctxfree); } while (ctxfree); do { ctxfree = NULL; spin_lock(&fl->hlock); hlist_for_each_entry_safe(ictx, n, &clst->pending, hn) { hlist_del_init(&ictx->hn); ctxfree = ictx; break; } spin_unlock(&fl->hlock); if (ctxfree) context_free(ctxfree); } while (ctxfree); } static int fastrpc_file_free(struct fastrpc_file *fl); static void fastrpc_file_list_dtor(struct fastrpc_apps *me) { struct fastrpc_file *fl, *free; struct hlist_node *n; do { free = NULL; spin_lock(&me->hlock); hlist_for_each_entry_safe(fl, n, &me->drivers, hn) { hlist_del_init(&fl->hn); free = fl; break; } spin_unlock(&me->hlock); if (free) fastrpc_file_free(free); } while (free); } static int get_args(uint32_t kernel, struct smq_invoke_ctx *ctx) { remote_arg64_t *rpra, *lrpra; remote_arg_t *lpra = ctx->lpra; struct smq_invoke_buf *list; struct smq_phy_page *pages, *ipage; uint32_t sc = ctx->sc; int inbufs = REMOTE_SCALARS_INBUFS(sc); int outbufs = REMOTE_SCALARS_OUTBUFS(sc); int handles, bufs = inbufs + outbufs; uintptr_t args; size_t rlen = 0, copylen = 0, metalen = 0, lrpralen = 0; int i, oix; int err = 0, j = 0; int mflags = 0; uint64_t *fdlist; uint32_t *crclist; uint32_t earlyHint; int64_t *perf_counter = NULL; if (ctx->fl->profile) perf_counter = getperfcounter(ctx->fl, PERF_COUNT); /* calculate size of the metadata */ rpra = NULL; lrpra = NULL; list = smq_invoke_buf_start(rpra, sc); pages = smq_phy_page_start(sc, list); ipage = pages; PERF(ctx->fl->profile, GET_COUNTER(perf_counter, PERF_MAP), for (i = 0; i < bufs; ++i) { uintptr_t buf = (uintptr_t)lpra[i].buf.pv; size_t len = lpra[i].buf.len; mutex_lock(&ctx->fl->map_mutex); if (ctx->fds && (ctx->fds[i] != -1)) err = fastrpc_mmap_create(ctx->fl, ctx->fds[i], ctx->attrs[i], buf, len, mflags, &ctx->maps[i]); if (ctx->maps[i]) ctx->maps[i]->ctx_refs++; mutex_unlock(&ctx->fl->map_mutex); if (err) goto bail; ipage += 1; } PERF_END); handles = REMOTE_SCALARS_INHANDLES(sc) + REMOTE_SCALARS_OUTHANDLES(sc); mutex_lock(&ctx->fl->map_mutex); for (i = bufs; i < bufs + handles; i++) { int dmaflags = 0; if (ctx->attrs && (ctx->attrs[i] & FASTRPC_ATTR_NOMAP)) dmaflags = FASTRPC_DMAHANDLE_NOMAP; if (ctx->fds && (ctx->fds[i] != -1)) err = fastrpc_mmap_create(ctx->fl, ctx->fds[i], FASTRPC_ATTR_NOVA, 0, 0, dmaflags, &ctx->maps[i]); if (!err && ctx->maps[i]) ctx->maps[i]->dma_handle_refs++; if (err) { for (j = bufs; j < i; j++) { if (ctx->maps[j] && ctx->maps[j]->dma_handle_refs) { ctx->maps[j]->dma_handle_refs--; fastrpc_mmap_free(ctx->maps[j], 0); } } mutex_unlock(&ctx->fl->map_mutex); goto bail; } ipage += 1; } mutex_unlock(&ctx->fl->map_mutex); /* metalen includes meta data, fds, crc and early wakeup hint */ metalen = copylen = (size_t)&ipage[0] + (sizeof(uint64_t) * M_FDLIST) + (sizeof(uint32_t) * M_CRCLIST) + sizeof(earlyHint); /* allocate new local rpra buffer */ lrpralen = (size_t)&list[0]; if (lrpralen) { lrpra = kzalloc(lrpralen, GFP_KERNEL); VERIFY(err, !IS_ERR_OR_NULL(lrpra)); if (err) goto bail; } ctx->lrpra = lrpra; /* calculate len required for copying */ for (oix = 0; oix < inbufs + outbufs; ++oix) { int i = ctx->overps[oix]->raix; uintptr_t mstart, mend; size_t len = lpra[i].buf.len; if (!len) continue; if (ctx->maps[i]) continue; if (ctx->overps[oix]->offset == 0) copylen = ALIGN(copylen, BALIGN); mstart = ctx->overps[oix]->mstart; mend = ctx->overps[oix]->mend; VERIFY(err, (mend - mstart) <= LONG_MAX); if (err) goto bail; copylen += mend - mstart; } ctx->used = copylen; /* allocate new buffer */ if (copylen) { err = fastrpc_buf_alloc(ctx->fl, copylen, 0, 0, 0, &ctx->buf); if (err) goto bail; } if (ctx->buf->virt && metalen <= copylen) memset(ctx->buf->virt, 0, metalen); /* copy metadata */ rpra = ctx->buf->virt; ctx->rpra = rpra; list = smq_invoke_buf_start(rpra, sc); pages = smq_phy_page_start(sc, list); ipage = pages; args = (uintptr_t)ctx->buf->virt + metalen; for (i = 0; i < bufs + handles; ++i) { if (lpra[i].buf.len) list[i].num = 1; else list[i].num = 0; list[i].pgidx = ipage - pages; ipage++; } /* map ion buffers */ PERF(ctx->fl->profile, GET_COUNTER(perf_counter, PERF_MAP), for (i = 0; rpra && i < inbufs + outbufs; ++i) { struct fastrpc_mmap *map = ctx->maps[i]; uint64_t buf = ptr_to_uint64(lpra[i].buf.pv); size_t len = lpra[i].buf.len; rpra[i].buf.pv = 0; rpra[i].buf.len = len; if (!len) continue; if (map) { struct vm_area_struct *vma; uintptr_t offset; uint64_t num = buf_num_pages(buf, len); int idx = list[i].pgidx; if (map->attr & FASTRPC_ATTR_NOVA) { offset = 0; } else { down_read(¤t->mm->mmap_sem); VERIFY(err, NULL != (vma = find_vma(current->mm, map->va))); if (err) { up_read(¤t->mm->mmap_sem); goto bail; } offset = buf_page_start(buf) - vma->vm_start; up_read(¤t->mm->mmap_sem); VERIFY(err, offset + len <= (uintptr_t)map->size); if (err) goto bail; } pages[idx].addr = map->phys + offset; pages[idx].size = num << PAGE_SHIFT; } rpra[i].buf.pv = buf; } PERF_END); /* Since we are not holidng map_mutex during get args whole time * it is possible that dma handle map may be removed by some invalid * fd passed by DSP. Inside the lock check if the map present or not */ mutex_lock(&ctx->fl->map_mutex); for (i = bufs; i < bufs + handles; ++i) { struct fastrpc_mmap *mmap = NULL; /* check if map was created */ if (ctx->maps[i]) { /* check if map still exist */ if (!fastrpc_mmap_find(ctx->fl, ctx->fds[i], 0, 0, 0, 0, &mmap)) { if (mmap) { pages[i].addr = mmap->phys; pages[i].size = mmap->size; } } else { /* map already freed by some other call */ mutex_unlock(&ctx->fl->map_mutex); pr_err("could not find map associated with dma handle fd %d\n", ctx->fds[i]); goto bail; } } } mutex_unlock(&ctx->fl->map_mutex); fdlist = (uint64_t *)&pages[bufs + handles]; crclist = (uint32_t *)&fdlist[M_FDLIST]; /* reset fds, crc and early wakeup hint memory */ /* remote process updates these values before responding */ memset(fdlist, 0, sizeof(uint64_t)*M_FDLIST + sizeof(uint32_t)*M_CRCLIST + sizeof(earlyHint)); /* copy non ion buffers */ PERF(ctx->fl->profile, GET_COUNTER(perf_counter, PERF_COPY), rlen = copylen - metalen; for (oix = 0; rpra && oix < inbufs + outbufs; ++oix) { int i = ctx->overps[oix]->raix; struct fastrpc_mmap *map = ctx->maps[i]; size_t mlen; uint64_t buf; size_t len = lpra[i].buf.len; if (!len) continue; if (map) continue; if (ctx->overps[oix]->offset == 0) { rlen -= ALIGN(args, BALIGN) - args; args = ALIGN(args, BALIGN); } mlen = ctx->overps[oix]->mend - ctx->overps[oix]->mstart; VERIFY(err, rlen >= mlen); if (err) goto bail; rpra[i].buf.pv = (args - ctx->overps[oix]->offset); pages[list[i].pgidx].addr = ctx->buf->phys - ctx->overps[oix]->offset + (copylen - rlen); pages[list[i].pgidx].addr = buf_page_start(pages[list[i].pgidx].addr); buf = rpra[i].buf.pv; pages[list[i].pgidx].size = buf_num_pages(buf, len) * PAGE_SIZE; if (i < inbufs) { K_COPY_FROM_USER(err, kernel, uint64_to_ptr(buf), lpra[i].buf.pv, len); if (err) goto bail; } args = args + mlen; rlen -= mlen; } PERF_END); PERF(ctx->fl->profile, GET_COUNTER(perf_counter, PERF_FLUSH), for (oix = 0; oix < inbufs + outbufs; ++oix) { int i = ctx->overps[oix]->raix; struct fastrpc_mmap *map = ctx->maps[i]; if (i+1 > inbufs) // Avoiding flush for outbufs continue; if (map && map->uncached) continue; if (ctx->fl->sctx && ctx->fl->sctx->smmu.coherent && !(map && (map->attr & FASTRPC_ATTR_NON_COHERENT))) continue; if (map && (map->attr & FASTRPC_ATTR_COHERENT)) continue; if (map && (map->attr & FASTRPC_ATTR_FORCE_NOFLUSH)) continue; if (rpra && rpra[i].buf.len && (ctx->overps[oix]->mstart || ctx->overps[oix]->do_cmo == 1)) { if (map && map->buf) { if ((buf_page_size(ctx->overps[oix]->mend - ctx->overps[oix]->mstart)) == map->size) { dma_buf_begin_cpu_access(map->buf, DMA_TO_DEVICE); dma_buf_end_cpu_access(map->buf, DMA_TO_DEVICE); pr_debug("Debug: adsprpc: %s: %s: sc 0x%x pv 0x%llx, mend 0x%llx mstart 0x%llx, len %zu size %zu\n", current->comm, __func__, sc, rpra[i].buf.pv, ctx->overps[oix]->mend, ctx->overps[oix]->mstart, rpra[i].buf.len, map->size); } else { uintptr_t offset; uint64_t flush_len; struct vm_area_struct *vma; down_read(¤t->mm->mmap_sem); VERIFY(err, NULL != (vma = find_vma( current->mm, rpra[i].buf.pv))); if (err) { up_read(¤t->mm->mmap_sem); goto bail; } if (ctx->overps[oix]->do_cmo) { offset = rpra[i].buf.pv - vma->vm_start; flush_len = rpra[i].buf.len; } else { offset = ctx->overps[oix]->mstart - vma->vm_start; flush_len = ctx->overps[oix]->mend - ctx->overps[oix]->mstart; } up_read(¤t->mm->mmap_sem); dma_buf_begin_cpu_access_partial( map->buf, DMA_TO_DEVICE, offset, flush_len); dma_buf_end_cpu_access_partial( map->buf, DMA_TO_DEVICE, offset, flush_len); pr_debug("Debug: adsprpc: %s: %s: sc 0x%x vm_start 0x%llx pv 0x%llx, offset 0x%llx, mend 0x%llx mstart 0x%llx, len %zu size %zu\n", current->comm, __func__, sc, vma->vm_start, rpra[i].buf.pv, offset, ctx->overps[oix]->mend, ctx->overps[oix]->mstart, rpra[i].buf.len, map->size); } } } } PERF_END); for (i = bufs; rpra && i < bufs + handles; i++) { if (ctx->fds) rpra[i].dma.fd = ctx->fds[i]; rpra[i].dma.len = (uint32_t)lpra[i].buf.len; rpra[i].dma.offset = (uint32_t)(uintptr_t)lpra[i].buf.pv; } /* Copy rpra to local buffer */ if (ctx->lrpra && rpra && lrpralen > 0) memcpy(ctx->lrpra, rpra, lrpralen); bail: return err; } static int put_args(uint32_t kernel, struct smq_invoke_ctx *ctx, remote_arg_t *upra) { uint32_t sc = ctx->sc; struct smq_invoke_buf *list; struct smq_phy_page *pages; struct fastrpc_mmap *mmap; uint64_t *fdlist; uint32_t *crclist = NULL; remote_arg64_t *rpra = ctx->lrpra; int i, inbufs, outbufs, handles; int err = 0; inbufs = REMOTE_SCALARS_INBUFS(sc); outbufs = REMOTE_SCALARS_OUTBUFS(sc); handles = REMOTE_SCALARS_INHANDLES(sc) + REMOTE_SCALARS_OUTHANDLES(sc); list = smq_invoke_buf_start(ctx->rpra, sc); pages = smq_phy_page_start(sc, list); fdlist = (uint64_t *)(pages + inbufs + outbufs + handles); crclist = (uint32_t *)(fdlist + M_FDLIST); for (i = inbufs; i < inbufs + outbufs; ++i) { if (!ctx->maps[i]) { K_COPY_TO_USER(err, kernel, ctx->lpra[i].buf.pv, uint64_to_ptr(rpra[i].buf.pv), rpra[i].buf.len); if (err) goto bail; } else { mutex_lock(&ctx->fl->map_mutex); if (ctx->maps[i]->ctx_refs) ctx->maps[i]->ctx_refs--; fastrpc_mmap_free(ctx->maps[i], 0); mutex_unlock(&ctx->fl->map_mutex); ctx->maps[i] = NULL; } } mutex_lock(&ctx->fl->map_mutex); if (inbufs + outbufs + handles) { for (i = 0; i < M_FDLIST; i++) { if (!fdlist[i]) break; if (!fastrpc_mmap_find(ctx->fl, (int)fdlist[i], 0, 0, 0, 0, &mmap)) { if (mmap && mmap->dma_handle_refs) { mmap->dma_handle_refs = 0; fastrpc_mmap_free(mmap, 0); } } } } mutex_unlock(&ctx->fl->map_mutex); if (ctx->crc && crclist && rpra) K_COPY_TO_USER(err, kernel, ctx->crc, crclist, M_CRCLIST*sizeof(uint32_t)); bail: return err; } static void inv_args(struct smq_invoke_ctx *ctx) { int i, inbufs, outbufs; uint32_t sc = ctx->sc; remote_arg64_t *rpra = ctx->lrpra; int err = 0; inbufs = REMOTE_SCALARS_INBUFS(sc); outbufs = REMOTE_SCALARS_OUTBUFS(sc); for (i = 0; i < inbufs + outbufs; ++i) { int over = ctx->overps[i]->raix; struct fastrpc_mmap *map = ctx->maps[over]; if ((over + 1 <= inbufs)) continue; if (map && map->uncached) continue; if (!rpra[over].buf.len) continue; if (ctx->fl && ctx->fl->sctx && ctx->fl->sctx->smmu.coherent && !(map && (map->attr & FASTRPC_ATTR_NON_COHERENT))) continue; if (map && (map->attr & FASTRPC_ATTR_COHERENT)) continue; if (map && (map->attr & FASTRPC_ATTR_FORCE_NOINVALIDATE)) continue; if (buf_page_start(ptr_to_uint64((void *)rpra)) == buf_page_start(rpra[over].buf.pv)) { continue; } if (ctx->overps[i]->mstart || ctx->overps[i]->do_cmo == 1) { if (map && map->buf) { if ((buf_page_size(ctx->overps[i]->mend - ctx->overps[i]->mstart)) == map->size) { dma_buf_begin_cpu_access(map->buf, DMA_TO_DEVICE); dma_buf_end_cpu_access(map->buf, DMA_FROM_DEVICE); pr_debug("Debug: adsprpc: %s: %s: sc 0x%x pv 0x%llx, mend 0x%llx mstart 0x%llx, len %zu size %zu\n", current->comm, __func__, sc, rpra[over].buf.pv, ctx->overps[i]->mend, ctx->overps[i]->mstart, rpra[over].buf.len, map->size); } else { uintptr_t offset; uint64_t inv_len; struct vm_area_struct *vma; down_read(¤t->mm->mmap_sem); VERIFY(err, NULL != (vma = find_vma( current->mm, rpra[over].buf.pv))); if (err) { up_read(¤t->mm->mmap_sem); goto bail; } if (ctx->overps[i]->do_cmo) { offset = rpra[over].buf.pv - vma->vm_start; inv_len = rpra[over].buf.len; } else { offset = ctx->overps[i]->mstart - vma->vm_start; inv_len = ctx->overps[i]->mend - ctx->overps[i]->mstart; } up_read(¤t->mm->mmap_sem); dma_buf_begin_cpu_access_partial( map->buf, DMA_TO_DEVICE, offset, inv_len); dma_buf_end_cpu_access_partial(map->buf, DMA_FROM_DEVICE, offset, inv_len); pr_debug("Debug: adsprpc: %s: %s: sc 0x%x vm_start 0x%llx pv 0x%llx, offset 0x%llx, mend 0x%llx mstart 0x%llx, len %zu size %zu\n", current->comm, __func__, sc, vma->vm_start, rpra[over].buf.pv, offset, ctx->overps[i]->mend, ctx->overps[i]->mstart, rpra[over].buf.len, map->size); } } } } bail: return; } static int fastrpc_invoke_send(struct smq_invoke_ctx *ctx, uint32_t kernel, uint32_t handle) { struct smq_msg *msg = &ctx->msg; struct fastrpc_file *fl = ctx->fl; struct fastrpc_channel_ctx *channel_ctx = NULL; int err = 0, cid = -1; if (!fl) { err = -EBADF; goto bail; } cid = fl->cid; VERIFY(err, cid >= ADSP_DOMAIN_ID && cid < NUM_CHANNELS); if (err) { err = -ECHRNG; goto bail; } channel_ctx = &fl->apps->channel[cid]; mutex_lock(&channel_ctx->smd_mutex); msg->pid = fl->tgid; msg->tid = current->pid; if (fl->sessionid) msg->tid |= (1 << SESSION_ID_INDEX); if (kernel) msg->pid = 0; msg->invoke.header.ctx = ctx->ctxid | fl->pd; msg->invoke.header.handle = handle; msg->invoke.header.sc = ctx->sc; msg->invoke.page.addr = ctx->buf ? ctx->buf->phys : 0; msg->invoke.page.size = buf_page_size(ctx->used); if (fl->ssrcount != channel_ctx->ssrcount) { err = -ECONNRESET; mutex_unlock(&channel_ctx->smd_mutex); goto bail; } mutex_unlock(&channel_ctx->smd_mutex); mutex_lock(&channel_ctx->rpmsg_mutex); VERIFY(err, !IS_ERR_OR_NULL(channel_ctx->rpdev)); if (err) { err = -ECONNRESET; mutex_unlock(&channel_ctx->rpmsg_mutex); goto bail; } err = rpmsg_send(channel_ctx->rpdev->ept, (void *)msg, sizeof(*msg)); trace_fastrpc_rpmsg_send(cid, (uint64_t)ctx, msg->invoke.header.ctx, handle, ctx->sc, msg->invoke.page.addr, msg->invoke.page.size); LOG_FASTRPC_GLINK_MSG(channel_ctx->ipc_log_ctx, "sent pkt %pK (sz %d): ctx 0x%llx, handle 0x%x, sc 0x%x (rpmsg err %d)", (void *)msg, sizeof(*msg), msg->invoke.header.ctx, handle, ctx->sc, err); mutex_unlock(&channel_ctx->rpmsg_mutex); bail: return err; } static void fastrpc_init(struct fastrpc_apps *me) { int i; INIT_HLIST_HEAD(&me->drivers); INIT_HLIST_HEAD(&me->maps); spin_lock_init(&me->hlock); me->channel = &gcinfo[0]; for (i = 0; i < NUM_CHANNELS; i++) { init_completion(&me->channel[i].work); init_completion(&me->channel[i].workport); me->channel[i].sesscount = 0; /* All channels are secure by default except CDSP */ me->channel[i].secure = SECURE_CHANNEL; me->channel[i].unsigned_support = false; mutex_init(&me->channel[i].smd_mutex); mutex_init(&me->channel[i].rpmsg_mutex); spin_lock_init(&me->channel[i].ctxlock); } /* Set CDSP channel to non secure */ me->channel[CDSP_DOMAIN_ID].secure = NON_SECURE_CHANNEL; /* Set CDSP channel unsigned_support to true*/ me->channel[CDSP_DOMAIN_ID].unsigned_support = true; } static inline void fastrpc_pm_awake(struct fastrpc_file *fl, int channel_type) { struct fastrpc_apps *me = &gfa; struct wakeup_source *wake_source = NULL; /* * Vote with PM to abort any suspend in progress and * keep system awake for specified timeout */ if (channel_type == SECURE_CHANNEL) wake_source = me->wake_source_secure; else if (channel_type == NON_SECURE_CHANNEL) wake_source = me->wake_source; if (wake_source) pm_wakeup_ws_event(wake_source, fl->ws_timeout, true); } static inline int fastrpc_wait_for_response(struct smq_invoke_ctx *ctx, uint32_t kernel) { int interrupted = 0; if (kernel) wait_for_completion(&ctx->work); else interrupted = wait_for_completion_interruptible(&ctx->work); return interrupted; } static void fastrpc_wait_for_completion(struct smq_invoke_ctx *ctx, int *pInterrupted, uint32_t kernel) { int interrupted = 0, err = 0; int jj; bool wait_resp; uint32_t wTimeout = FASTRPC_USER_EARLY_HINT_TIMEOUT; uint32_t wakeTime = 0; if (!ctx) { /* This failure is not expected */ err = *pInterrupted = EFAULT; pr_err("Error %d: adsprpc: %s: %s: ctx is NULL, cannot wait for response\n", err, current->comm, __func__); return; } wakeTime = ctx->earlyWakeTime; do { switch (ctx->rspFlags) { /* try polling on completion with timeout */ case USER_EARLY_SIGNAL: /* try wait if completion time is less than timeout */ /* disable preempt to avoid context switch latency */ preempt_disable(); jj = 0; wait_resp = false; for (; wakeTime < wTimeout && jj < wTimeout; jj++) { wait_resp = try_wait_for_completion(&ctx->work); if (wait_resp) break; udelay(1); } preempt_enable_no_resched(); if (!wait_resp) { interrupted = fastrpc_wait_for_response(ctx, kernel); *pInterrupted = interrupted; if (interrupted || ctx->isWorkDone) return; } break; /* busy poll on memory for actual job done */ case EARLY_RESPONSE: err = poll_on_early_response(ctx); /* Mark job done if poll on memory successful */ /* Wait for completion if poll on memory timoeut */ if (!err) { ctx->isWorkDone = true; } else if (!ctx->isWorkDone) { pr_info("adsprpc: %s: %s: poll timeout for handle 0x%x, sc 0x%x\n", __func__, current->comm, ctx->handle, ctx->sc); interrupted = fastrpc_wait_for_response(ctx, kernel); *pInterrupted = interrupted; if (interrupted || ctx->isWorkDone) return; } break; case COMPLETE_SIGNAL: case NORMAL_RESPONSE: interrupted = fastrpc_wait_for_response(ctx, kernel); *pInterrupted = interrupted; if (interrupted || ctx->isWorkDone) return; break; default: *pInterrupted = EBADR; pr_err("Error: adsprpc: %s: unsupported response flags 0x%x for handle 0x%x, sc 0x%x\n", current->comm, ctx->rspFlags, ctx->handle, ctx->sc); return; } /* end of switch */ } while (!ctx->isWorkDone); } static void fastrpc_update_invoke_count(uint32_t handle, int64_t *perf_counter, struct timespec64 *invoket) { /* update invoke count for dynamic handles */ if (handle != FASTRPC_STATIC_HANDLE_LISTENER) { int64_t *count = GET_COUNTER(perf_counter, PERF_INVOKE); if (count) *count += getnstimediff(invoket); } if (handle > FASTRPC_STATIC_HANDLE_MAX) { int64_t *count = GET_COUNTER(perf_counter, PERF_COUNT); if (count) *count += 1; } } static int fastrpc_internal_invoke(struct fastrpc_file *fl, uint32_t mode, uint32_t kernel, struct fastrpc_ioctl_invoke_crc *inv) { struct smq_invoke_ctx *ctx = NULL; struct fastrpc_ioctl_invoke *invoke = &inv->inv; int err = 0, interrupted = 0, cid = -1; struct timespec64 invoket = {0}; int64_t *perf_counter = NULL; cid = fl->cid; VERIFY(err, cid >= ADSP_DOMAIN_ID && cid < NUM_CHANNELS); if (err) { err = -ECHRNG; goto bail; } VERIFY(err, fl->sctx != NULL); if (err) { pr_err("adsprpc: ERROR: %s: user application %s domain is not set\n", __func__, current->comm); err = -EBADR; goto bail; } if (fl->profile) { perf_counter = getperfcounter(fl, PERF_COUNT); ktime_get_real_ts64(&invoket); } if (!kernel) { VERIFY(err, invoke->handle != FASTRPC_STATIC_HANDLE_PROCESS_GROUP); VERIFY(err, invoke->handle != FASTRPC_STATIC_HANDLE_DSP_UTILITIES); if (err) { pr_err("adsprpc: ERROR: %s: user application %s trying to send a kernel RPC message to channel %d, handle 0x%x\n", __func__, current->comm, cid, invoke->handle); goto bail; } } if (!kernel) { err = context_restore_interrupted(fl, inv, &ctx); if (err) goto bail; if (fl->sctx->smmu.faults) err = FASTRPC_ENOSUCH; if (err) goto bail; if (ctx) { trace_fastrpc_context_restore(cid, (uint64_t)ctx, ctx->msg.invoke.header.ctx, ctx->handle, ctx->sc); goto wait; } } VERIFY(err, 0 == context_alloc(fl, kernel, inv, &ctx)); if (err) goto bail; if (REMOTE_SCALARS_LENGTH(ctx->sc)) { PERF(fl->profile, GET_COUNTER(perf_counter, PERF_GETARGS), VERIFY(err, 0 == get_args(kernel, ctx)); PERF_END); if (err) goto bail; } PERF(fl->profile, GET_COUNTER(perf_counter, PERF_INVARGS), inv_args(ctx); PERF_END); PERF(fl->profile, GET_COUNTER(perf_counter, PERF_LINK), VERIFY(err, 0 == fastrpc_invoke_send(ctx, kernel, invoke->handle)); PERF_END); if (err) goto bail; wait: fastrpc_wait_for_completion(ctx, &interrupted, kernel); VERIFY(err, 0 == (err = interrupted)); if (err) goto bail; if (!ctx->isWorkDone) { err = EPROTO; pr_err("Error: adsprpc: %s: %s: WorkDone state is invalid for handle 0x%x, sc 0x%x\n", __func__, current->comm, invoke->handle, ctx->sc); goto bail; } PERF(fl->profile, GET_COUNTER(perf_counter, PERF_INVARGS), inv_args(ctx); PERF_END); PERF(fl->profile, GET_COUNTER(perf_counter, PERF_PUTARGS), VERIFY(err, 0 == (err = put_args(kernel, ctx, invoke->pra))); PERF_END); if (err) goto bail; VERIFY(err, 0 == (err = ctx->retval)); if (err) goto bail; bail: if (ctx && interrupted == -ERESTARTSYS) { trace_fastrpc_context_interrupt(cid, (uint64_t)ctx, ctx->msg.invoke.header.ctx, ctx->handle, ctx->sc); context_save_interrupted(ctx); } else if (ctx) context_free(ctx); if (fl->ssrcount != fl->apps->channel[cid].ssrcount) err = ECONNRESET; if (fl->profile && !interrupted) fastrpc_update_invoke_count(invoke->handle, perf_counter, &invoket); return err; } static int fastrpc_get_spd_session(char *name, int *session, int *cid) { struct fastrpc_apps *me = &gfa; int err = 0, i, j, match = 0; for (i = 0; i < NUM_CHANNELS; i++) { for (j = 0; j < NUM_SESSIONS; j++) { if (!me->channel[i].spd[j].servloc_name) continue; if (!strcmp(name, me->channel[i].spd[j].servloc_name)) { match = 1; break; } } if (match) break; } VERIFY(err, i < NUM_CHANNELS && j < NUM_SESSIONS); if (err) goto bail; *cid = i; *session = j; bail: return err; } static int fastrpc_mmap_remove_pdr(struct fastrpc_file *fl); static int fastrpc_channel_open(struct fastrpc_file *fl); static int fastrpc_mmap_remove_ssr(struct fastrpc_file *fl, int locked); static int fastrpc_init_process(struct fastrpc_file *fl, struct fastrpc_ioctl_init_attrs *uproc) { int err = 0, rh_hyp_done = 0, locked = 0; struct fastrpc_apps *me = &gfa; struct fastrpc_ioctl_invoke_crc ioctl; struct fastrpc_ioctl_init *init = &uproc->init; struct smq_phy_page pages[1]; struct fastrpc_mmap *file = NULL, *mem = NULL; struct fastrpc_buf *imem = NULL; unsigned long imem_dma_attr = 0; char *proc_name = NULL; bool init_flags = init->flags == FASTRPC_INIT_CREATE ? true : false; int proc_attrs = uproc->attrs & FASTRPC_MODE_UNSIGNED_MODULE; int unsigned_request = proc_attrs && init_flags; int cid = fl->cid; struct fastrpc_channel_ctx *chan = &me->channel[cid]; struct fastrpc_buf *init_mem; if (chan->unsigned_support && fl->dev_minor == MINOR_NUM_DEV) { /* Make sure third party applications */ /* can spawn only unsigned PD when */ /* channel configured as secure. */ if (chan->secure && !unsigned_request) { err = -ECONNREFUSED; goto bail; } } VERIFY(err, 0 == (err = fastrpc_channel_open(fl))); if (err) goto bail; if (init->flags == FASTRPC_INIT_ATTACH || init->flags == FASTRPC_INIT_ATTACH_SENSORS) { remote_arg_t ra[1]; int tgid = fl->tgid; if (fl->dev_minor == MINOR_NUM_DEV) { err = -ECONNREFUSED; pr_err("adsprpc: %s: untrusted app trying to attach to privileged DSP PD\n", __func__); return err; } ra[0].buf.pv = (void *)&tgid; ra[0].buf.len = sizeof(tgid); ioctl.inv.handle = FASTRPC_STATIC_HANDLE_PROCESS_GROUP; ioctl.inv.sc = REMOTE_SCALARS_MAKE(0, 1, 0); ioctl.inv.pra = ra; ioctl.fds = NULL; ioctl.attrs = NULL; ioctl.crc = NULL; if (init->flags == FASTRPC_INIT_ATTACH) fl->pd = 0; else if (init->flags == FASTRPC_INIT_ATTACH_SENSORS) { if (fl->cid == ADSP_DOMAIN_ID) fl->servloc_name = SENSORS_PDR_ADSP_SERVICE_LOCATION_CLIENT_NAME; else if (fl->cid == SDSP_DOMAIN_ID) fl->servloc_name = SENSORS_PDR_SLPI_SERVICE_LOCATION_CLIENT_NAME; fl->pd = 2; } VERIFY(err, !(err = fastrpc_internal_invoke(fl, FASTRPC_MODE_PARALLEL, 1, &ioctl))); if (err) goto bail; } else if (init->flags == FASTRPC_INIT_CREATE) { int memlen; remote_arg_t ra[6]; int fds[6]; int mflags = 0; struct { int pgid; unsigned int namelen; unsigned int filelen; unsigned int pageslen; int attrs; int siglen; } inbuf; spin_lock(&fl->hlock); if (fl->dsp_process_state) { err = -EALREADY; pr_err("Already in create init process\n"); spin_unlock(&fl->hlock); return err; } fl->dsp_process_state = PROCESS_CREATE_IS_INPROGRESS; spin_unlock(&fl->hlock); inbuf.pgid = fl->tgid; inbuf.namelen = strlen(current->comm) + 1; inbuf.filelen = init->filelen; fl->pd = 1; VERIFY(err, access_ok(0, (void __user *)init->file, init->filelen)); if (err) goto bail; if (init->filelen) { mutex_lock(&fl->map_mutex); VERIFY(err, !fastrpc_mmap_create(fl, init->filefd, 0, init->file, init->filelen, mflags, &file)); if (file) file->is_filemap = true; mutex_unlock(&fl->map_mutex); if (err) goto bail; } inbuf.pageslen = 1; VERIFY(err, !init->mem); if (err) { err = -EINVAL; pr_err("adsprpc: %s: %s: ERROR: donated memory allocated in userspace\n", current->comm, __func__); goto bail; } memlen = ALIGN(max(1024*1024*3, (int)init->filelen * 4), 1024*1024); imem_dma_attr = DMA_ATTR_EXEC_MAPPING | DMA_ATTR_DELAYED_UNMAP | DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_FORCE_NON_COHERENT; err = fastrpc_buf_alloc(fl, memlen, imem_dma_attr, 0, 0, &imem); if (err) goto bail; if (fl->init_mem) fastrpc_buf_free(fl->init_mem, 0); fl->init_mem = imem; inbuf.pageslen = 1; ra[0].buf.pv = (void *)&inbuf; ra[0].buf.len = sizeof(inbuf); fds[0] = -1; ra[1].buf.pv = (void *)current->comm; ra[1].buf.len = inbuf.namelen; fds[1] = -1; ra[2].buf.pv = (void *)init->file; ra[2].buf.len = inbuf.filelen; fds[2] = init->filefd; pages[0].addr = imem->phys; pages[0].size = imem->size; ra[3].buf.pv = (void *)pages; ra[3].buf.len = 1 * sizeof(*pages); fds[3] = -1; inbuf.attrs = uproc->attrs; ra[4].buf.pv = (void *)&(inbuf.attrs); ra[4].buf.len = sizeof(inbuf.attrs); fds[4] = -1; inbuf.siglen = uproc->siglen; ra[5].buf.pv = (void *)&(inbuf.siglen); ra[5].buf.len = sizeof(inbuf.siglen); fds[5] = -1; ioctl.inv.handle = FASTRPC_STATIC_HANDLE_PROCESS_GROUP; ioctl.inv.sc = REMOTE_SCALARS_MAKE(6, 4, 0); if (uproc->attrs) ioctl.inv.sc = REMOTE_SCALARS_MAKE(7, 6, 0); ioctl.inv.pra = ra; ioctl.fds = fds; ioctl.attrs = NULL; ioctl.crc = NULL; VERIFY(err, !(err = fastrpc_internal_invoke(fl, FASTRPC_MODE_PARALLEL, 1, &ioctl))); if (err) goto bail; } else if (init->flags == FASTRPC_INIT_CREATE_STATIC) { remote_arg_t ra[3]; uint64_t phys = 0; size_t size = 0; int fds[3]; struct { int pgid; unsigned int namelen; unsigned int pageslen; } inbuf; if (fl->dev_minor == MINOR_NUM_DEV) { err = -ECONNREFUSED; pr_err("adsprpc: %s: untrusted app trying to attach to audio PD\n", __func__); return err; } if (!init->filelen) goto bail; proc_name = kzalloc(init->filelen + 1, GFP_KERNEL); VERIFY(err, !IS_ERR_OR_NULL(proc_name)); if (err) goto bail; VERIFY(err, 0 == copy_from_user((void *)proc_name, (void __user *)init->file, init->filelen)); if (err) goto bail; fl->pd = 1; inbuf.pgid = current->tgid; inbuf.namelen = init->filelen; inbuf.pageslen = 0; if (!strcmp(proc_name, "audiopd")) { fl->servloc_name = AUDIO_PDR_SERVICE_LOCATION_CLIENT_NAME; VERIFY(err, !fastrpc_mmap_remove_pdr(fl)); if (err) goto bail; } if (!me->staticpd_flags && !(me->legacy_remote_heap)) { inbuf.pageslen = 1; mutex_lock(&fl->map_mutex); err = fastrpc_mmap_create(fl, -1, 0, init->mem, init->memlen, ADSP_MMAP_REMOTE_HEAP_ADDR, &mem); if (mem) mem->is_filemap = true; mutex_unlock(&fl->map_mutex); if (err) goto bail; fastrpc_mmap_add_global(mem); phys = mem->phys; size = mem->size; if (me->channel[fl->cid].rhvm.vmid) { err = hyp_assign_phys(phys, (uint64_t)size, hlosvm, 1, me->channel[fl->cid].rhvm.vmid, me->channel[fl->cid].rhvm.vmperm, me->channel[fl->cid].rhvm.vmcount); if (err) { pr_err("adsprpc: %s: rh hyp assign failed with %d for phys 0x%llx, size %zd\n", __func__, err, phys, size); goto bail; } rh_hyp_done = 1; } me->staticpd_flags = 1; } ra[0].buf.pv = (void *)&inbuf; ra[0].buf.len = sizeof(inbuf); fds[0] = -1; ra[1].buf.pv = (void *)proc_name; ra[1].buf.len = inbuf.namelen; fds[1] = -1; pages[0].addr = phys; pages[0].size = size; ra[2].buf.pv = (void *)pages; ra[2].buf.len = sizeof(*pages); fds[2] = -1; ioctl.inv.handle = FASTRPC_STATIC_HANDLE_PROCESS_GROUP; ioctl.inv.sc = REMOTE_SCALARS_MAKE(8, 3, 0); ioctl.inv.pra = ra; ioctl.fds = NULL; ioctl.attrs = NULL; ioctl.crc = NULL; VERIFY(err, !(err = fastrpc_internal_invoke(fl, FASTRPC_MODE_PARALLEL, 1, &ioctl))); if (err) goto bail; } else { err = -ENOTTY; goto bail; } fl->dsp_proc_init = 1; bail: kfree(proc_name); if (err && (init->flags == FASTRPC_INIT_CREATE_STATIC)) me->staticpd_flags = 0; if (mem && err) { if (mem->flags == ADSP_MMAP_REMOTE_HEAP_ADDR && me->channel[fl->cid].rhvm.vmid && rh_hyp_done) { int hyp_err = 0; hyp_err = hyp_assign_phys(mem->phys, (uint64_t)mem->size, me->channel[fl->cid].rhvm.vmid, me->channel[fl->cid].rhvm.vmcount, hlosvm, hlosvmperm, 1); if (hyp_err) pr_warn("adsprpc: %s: %s: rh hyp unassign failed with %d for phys 0x%llx of size %zd\n", __func__, current->comm, hyp_err, mem->phys, mem->size); } mutex_lock(&fl->map_mutex); fastrpc_mmap_free(mem, 0); mutex_unlock(&fl->map_mutex); } if (file) { mutex_lock(&fl->map_mutex); fastrpc_mmap_free(file, 0); mutex_unlock(&fl->map_mutex); } spin_lock(&fl->hlock); locked = 1; if (err) { fl->dsp_process_state = PROCESS_CREATE_DEFAULT; if (!IS_ERR_OR_NULL(fl->init_mem)) { init_mem = fl->init_mem; fl->init_mem = NULL; locked = 0; spin_unlock(&fl->hlock); fastrpc_buf_free(init_mem, 0); } } else { fl->dsp_process_state = PROCESS_CREATE_SUCCESS; } if (locked) { locked = 0; spin_unlock(&fl->hlock); } return err; } static int fastrpc_send_cpuinfo_to_dsp(struct fastrpc_file *fl) { int err = 0; uint64_t cpuinfo = 0; struct fastrpc_apps *me = &gfa; struct fastrpc_ioctl_invoke_crc ioctl; remote_arg_t ra[2]; int cid = -1; if (!fl) { err = -EBADF; goto bail; } cid = fl->cid; VERIFY(err, cid >= ADSP_DOMAIN_ID && cid < NUM_CHANNELS); if (err) { err = -ECHRNG; pr_err("invalid channel 0x%zx set for session\n\n", cid); goto bail; } cpuinfo = me->channel[cid].cpuinfo_todsp; /* return success if already updated to remote processor */ if (me->channel[cid].cpuinfo_status) return 0; ra[0].buf.pv = (void *)&cpuinfo; ra[0].buf.len = sizeof(cpuinfo); ioctl.inv.handle = FASTRPC_STATIC_HANDLE_DSP_UTILITIES; ioctl.inv.sc = REMOTE_SCALARS_MAKE(1, 1, 0); ioctl.inv.pra = ra; ioctl.fds = NULL; ioctl.attrs = NULL; ioctl.crc = NULL; fl->pd = 1; err = fastrpc_internal_invoke(fl, FASTRPC_MODE_PARALLEL, 1, &ioctl); if (!err) me->channel[cid].cpuinfo_status = true; bail: return err; } static int fastrpc_get_info_from_dsp(struct fastrpc_file *fl, uint32_t *dsp_attr_buf, uint32_t dsp_attr_buf_len, uint32_t domain) { int err = 0, dsp_support = 0; struct fastrpc_ioctl_invoke_crc ioctl; remote_arg_t ra[2]; struct fastrpc_apps *me = &gfa; // Querying device about DSP support switch (domain) { case ADSP_DOMAIN_ID: case SDSP_DOMAIN_ID: case CDSP_DOMAIN_ID: if (me->channel[domain].subsystemstate == SUBSYSTEM_UP) dsp_support = 1; break; case MDSP_DOMAIN_ID: //Modem not supported for fastRPC break; default: dsp_support = 0; break; } dsp_attr_buf[0] = dsp_support; if (dsp_support == 0) { err = -ENOTCONN; goto bail; } err = fastrpc_channel_open(fl); if (err) goto bail; ra[0].buf.pv = (void *)&dsp_attr_buf_len; ra[0].buf.len = sizeof(dsp_attr_buf_len); ra[1].buf.pv = (void *)(&dsp_attr_buf[1]); ra[1].buf.len = dsp_attr_buf_len * sizeof(uint32_t); ioctl.inv.handle = FASTRPC_STATIC_HANDLE_DSP_UTILITIES; ioctl.inv.sc = REMOTE_SCALARS_MAKE(0, 1, 1); ioctl.inv.pra = ra; ioctl.fds = NULL; ioctl.attrs = NULL; ioctl.crc = NULL; fl->pd = 1; err = fastrpc_internal_invoke(fl, FASTRPC_MODE_PARALLEL, 1, &ioctl); bail: if (err) pr_err("adsprpc: %s: %s: could not obtain dsp information, err val 0x%x\n", current->comm, __func__, err); return err; } static int fastrpc_get_info_from_kernel( struct fastrpc_ioctl_dsp_capabilities *dsp_cap, struct fastrpc_file *fl) { int err = 0; uint32_t domain_support; uint32_t domain = dsp_cap->domain; if (!gcinfo[domain].dsp_cap_kernel.is_cached) { /* * Information not on kernel, query device for information * and cache on kernel */ err = fastrpc_get_info_from_dsp(fl, dsp_cap->dsp_attributes, FASTRPC_MAX_DSP_ATTRIBUTES - 1, domain); if (err) goto bail; domain_support = dsp_cap->dsp_attributes[0]; switch (domain_support) { case 0: memset(dsp_cap->dsp_attributes, 0, sizeof(dsp_cap->dsp_attributes)); memset(&gcinfo[domain].dsp_cap_kernel.dsp_attributes, 0, sizeof(dsp_cap->dsp_attributes)); break; case 1: memcpy(&gcinfo[domain].dsp_cap_kernel.dsp_attributes, dsp_cap->dsp_attributes, sizeof(dsp_cap->dsp_attributes)); break; default: err = -1; /* * Reset is_cached flag to 0 so subsequent calls * can try to query dsp again */ gcinfo[domain].dsp_cap_kernel.is_cached = 0; pr_warn("adsprpc: %s: %s: returned bad domain support value %d\n", current->comm, __func__, domain_support); goto bail; } gcinfo[domain].dsp_cap_kernel.is_cached = 1; } else { // Information on Kernel, pass it to user memcpy(dsp_cap->dsp_attributes, &gcinfo[domain].dsp_cap_kernel.dsp_attributes, sizeof(dsp_cap->dsp_attributes)); } bail: return err; } static int fastrpc_release_current_dsp_process(struct fastrpc_file *fl) { int err = 0; struct fastrpc_ioctl_invoke_crc ioctl; remote_arg_t ra[1]; int tgid = 0; int cid = -1; if (!fl) { err = -EBADF; goto bail; } cid = fl->cid; VERIFY(err, cid >= ADSP_DOMAIN_ID && cid < NUM_CHANNELS); if (err) { err = -ECHRNG; goto bail; } VERIFY(err, fl->sctx != NULL); if (err) goto bail; VERIFY(err, fl->apps->channel[cid].rpdev != NULL); if (err) goto bail; VERIFY(err, fl->apps->channel[cid].subsystemstate != SUBSYSTEM_RESTARTING); if (err) { wait_for_completion(&fl->shutdown); goto bail; } tgid = fl->tgid; ra[0].buf.pv = (void *)&tgid; ra[0].buf.len = sizeof(tgid); ioctl.inv.handle = FASTRPC_STATIC_HANDLE_PROCESS_GROUP; ioctl.inv.sc = REMOTE_SCALARS_MAKE(1, 1, 0); ioctl.inv.pra = ra; ioctl.fds = NULL; ioctl.attrs = NULL; ioctl.crc = NULL; VERIFY(err, 0 == (err = fastrpc_internal_invoke(fl, FASTRPC_MODE_PARALLEL, 1, &ioctl))); if (err && fl->dsp_proc_init) pr_err("adsprpc: %s: releasing DSP process failed with %d (0x%x) for %s\n", __func__, err, err, current->comm); bail: return err; } static int fastrpc_unmap_on_dsp(struct fastrpc_file *fl, uintptr_t raddr, uint64_t phys, size_t size, uint32_t flags) { struct fastrpc_ioctl_invoke_crc ioctl; remote_arg_t ra[1] = {}; int err = 0; struct { int pid; uintptr_t vaddrout; size_t size; } inargs; inargs.pid = fl->tgid; inargs.size = size; inargs.vaddrout = raddr; ra[0].buf.pv = (void *)&inargs; ra[0].buf.len = sizeof(inargs); ioctl.inv.handle = FASTRPC_STATIC_HANDLE_PROCESS_GROUP; if (fl->apps->compat) ioctl.inv.sc = REMOTE_SCALARS_MAKE(5, 1, 0); else ioctl.inv.sc = REMOTE_SCALARS_MAKE(3, 1, 0); ioctl.inv.pra = ra; ioctl.fds = NULL; ioctl.attrs = NULL; ioctl.crc = NULL; VERIFY(err, 0 == (err = fastrpc_internal_invoke(fl, FASTRPC_MODE_PARALLEL, 1, &ioctl))); if (err) goto bail; bail: return err; } static int fastrpc_mmap_on_dsp(struct fastrpc_file *fl, uint32_t flags, uintptr_t va, uint64_t phys, size_t size, int refs, uintptr_t *raddr) { struct fastrpc_ioctl_invoke_crc ioctl; struct fastrpc_apps *me = &gfa; struct smq_phy_page page; int num = 1; remote_arg_t ra[3]; int err = 0; struct { int pid; uint32_t flags; uintptr_t vaddrin; int num; } inargs; struct { uintptr_t vaddrout; } routargs; int cid = -1; if (!fl) { err = -EBADF; goto bail; } cid = fl->cid; inargs.pid = fl->tgid; inargs.vaddrin = (uintptr_t)va; inargs.flags = flags; inargs.num = fl->apps->compat ? num * sizeof(page) : num; ra[0].buf.pv = (void *)&inargs; ra[0].buf.len = sizeof(inargs); page.addr = phys; page.size = size; ra[1].buf.pv = (void *)&page; ra[1].buf.len = num * sizeof(page); ra[2].buf.pv = (void *)&routargs; ra[2].buf.len = sizeof(routargs); ioctl.inv.handle = FASTRPC_STATIC_HANDLE_PROCESS_GROUP; if (fl->apps->compat) ioctl.inv.sc = REMOTE_SCALARS_MAKE(4, 2, 1); else ioctl.inv.sc = REMOTE_SCALARS_MAKE(2, 2, 1); ioctl.inv.pra = ra; ioctl.fds = NULL; ioctl.attrs = NULL; ioctl.crc = NULL; VERIFY(err, 0 == (err = fastrpc_internal_invoke(fl, FASTRPC_MODE_PARALLEL, 1, &ioctl))); *raddr = (uintptr_t)routargs.vaddrout; if (err) goto bail; if (flags == ADSP_MMAP_REMOTE_HEAP_ADDR) { VERIFY(err, cid >= ADSP_DOMAIN_ID && cid < NUM_CHANNELS); if (err) { err = -ECHRNG; pr_err("invalid channel 0x%zx set for session\n", cid); goto bail; } } if (flags == ADSP_MMAP_REMOTE_HEAP_ADDR && me->channel[cid].rhvm.vmid && refs == 1) { err = hyp_assign_phys(phys, (uint64_t)size, hlosvm, 1, me->channel[cid].rhvm.vmid, me->channel[cid].rhvm.vmperm, me->channel[cid].rhvm.vmcount); if (err) { pr_err("adsprpc: %s: %s: rh hyp assign failed with %d for phys 0x%llx, size %zd\n", __func__, current->comm, err, phys, size); err = fastrpc_unmap_on_dsp(fl, *raddr, phys, size, flags); if (err) { pr_err("adsprpc: %s: %s: failed to unmap %d for phys 0x%llx, size %zd\n", __func__, current->comm, err, phys, size); } goto bail; } } bail: return err; } static int fastrpc_munmap_on_dsp_rh(struct fastrpc_file *fl, uint64_t phys, size_t size, uint32_t flags, int locked) { int err = 0; struct fastrpc_apps *me = &gfa; int tgid = 0; int destVM[1] = {VMID_HLOS}; int destVMperm[1] = {PERM_READ | PERM_WRITE | PERM_EXEC}; int cid = -1; if (!fl) { err = -EBADF; goto bail; } cid = fl->cid; VERIFY(err, cid >= ADSP_DOMAIN_ID && cid < NUM_CHANNELS); if (err) { err = -ECHRNG; pr_err("invalid channel 0x%zx set for session\n", cid); goto bail; } if (flags == ADSP_MMAP_HEAP_ADDR) { struct fastrpc_ioctl_invoke_crc ioctl; remote_arg_t ra[2]; int err = 0; struct { uint8_t skey; } routargs; tgid = fl->tgid; ra[0].buf.pv = (void *)&tgid; ra[0].buf.len = sizeof(tgid); ra[1].buf.pv = (void *)&routargs; ra[1].buf.len = sizeof(routargs); ioctl.inv.handle = FASTRPC_STATIC_HANDLE_PROCESS_GROUP; ioctl.inv.sc = REMOTE_SCALARS_MAKE(9, 1, 1); ioctl.inv.pra = ra; ioctl.fds = NULL; ioctl.attrs = NULL; ioctl.crc = NULL; if (locked) { mutex_unlock(&fl->map_mutex); mutex_unlock(&me->channel[cid].smd_mutex); } VERIFY(err, 0 == (err = fastrpc_internal_invoke(fl, FASTRPC_MODE_PARALLEL, 1, &ioctl))); if (locked) { mutex_lock(&me->channel[cid].smd_mutex); mutex_lock(&fl->map_mutex); } if (err) goto bail; } else if (flags == ADSP_MMAP_REMOTE_HEAP_ADDR) { if (me->channel[cid].rhvm.vmid) { err = hyp_assign_phys(phys, (uint64_t)size, me->channel[cid].rhvm.vmid, me->channel[cid].rhvm.vmcount, destVM, destVMperm, 1); if (err) { pr_err("adsprpc: %s: %s: rh hyp unassign failed with %d for phys 0x%llx, size %zd\n", __func__, current->comm, err, phys, size); goto bail; } } } bail: return err; } static int fastrpc_munmap_on_dsp(struct fastrpc_file *fl, uintptr_t raddr, uint64_t phys, size_t size, uint32_t flags) { int err = 0; VERIFY(err, 0 == (err = fastrpc_unmap_on_dsp(fl, raddr, phys, size, flags))); if (err) goto bail; if (flags == ADSP_MMAP_HEAP_ADDR || flags == ADSP_MMAP_REMOTE_HEAP_ADDR) { VERIFY(err, !fastrpc_munmap_on_dsp_rh(fl, phys, size, flags, 0)); if (err) goto bail; } bail: return err; } static int fastrpc_mmap_remove_ssr(struct fastrpc_file *fl, int locked) { struct fastrpc_mmap *match = NULL, *map = NULL; struct hlist_node *n = NULL; int err = 0, ret = 0; struct fastrpc_apps *me = &gfa; struct ramdump_segment *ramdump_segments_rh = NULL; VERIFY(err, fl->cid == RH_CID); if (err) goto bail; do { match = NULL; spin_lock(&me->hlock); hlist_for_each_entry_safe(map, n, &me->maps, hn) { match = map; hlist_del_init(&map->hn); break; } spin_unlock(&me->hlock); if (match) { err = fastrpc_munmap_on_dsp_rh(fl, match->phys, match->size, match->flags, locked); if (err) goto bail; if (me->ramdump_handle && me->enable_ramdump) { ramdump_segments_rh = kcalloc(1, sizeof(struct ramdump_segment), GFP_KERNEL); if (ramdump_segments_rh) { ramdump_segments_rh->address = match->phys; ramdump_segments_rh->size = match->size; ret = do_elf_ramdump( me->ramdump_handle, ramdump_segments_rh, 1); if (ret < 0) pr_err("adsprpc: %s: unable to dump heap (err %d)\n", __func__, ret); kfree(ramdump_segments_rh); } } fastrpc_mmap_free(match, 0); } } while (match); me->enable_ramdump = false; bail: if (err && match) fastrpc_mmap_add_global(match); return err; } static int fastrpc_mmap_remove_pdr(struct fastrpc_file *fl) { struct fastrpc_apps *me = &gfa; int session = 0, err = 0, cid = -1; if (!fl) { err = -EBADF; goto bail; } err = fastrpc_get_spd_session(fl->servloc_name, &session, &cid); if (err) goto bail; VERIFY(err, cid == fl->cid); if (err) goto bail; if (!me->channel[cid].spd[session].ispdup) { err = -ENOTCONN; goto bail; } if (me->channel[cid].spd[session].pdrcount != me->channel[cid].spd[session].prevpdrcount) { err = fastrpc_mmap_remove_ssr(fl, 0); if (err) pr_warn("adsprpc: %s: %s: failed to unmap remote heap (err %d)\n", __func__, current->comm, err); me->channel[cid].spd[session].prevpdrcount = me->channel[cid].spd[session].pdrcount; } bail: return err; } static inline void get_fastrpc_ioctl_mmap_64( struct fastrpc_ioctl_mmap_64 *mmap64, struct fastrpc_ioctl_mmap *immap) { immap->fd = mmap64->fd; immap->flags = mmap64->flags; immap->vaddrin = (uintptr_t)mmap64->vaddrin; immap->size = mmap64->size; } static inline void put_fastrpc_ioctl_mmap_64( struct fastrpc_ioctl_mmap_64 *mmap64, struct fastrpc_ioctl_mmap *immap) { mmap64->vaddrout = (uint64_t)immap->vaddrout; } static inline void get_fastrpc_ioctl_munmap_64( struct fastrpc_ioctl_munmap_64 *munmap64, struct fastrpc_ioctl_munmap *imunmap) { imunmap->vaddrout = (uintptr_t)munmap64->vaddrout; imunmap->size = munmap64->size; } static int fastrpc_internal_munmap(struct fastrpc_file *fl, struct fastrpc_ioctl_munmap *ud) { int err = 0; struct fastrpc_mmap *map = NULL; struct fastrpc_buf *rbuf = NULL, *free = NULL; struct hlist_node *n; VERIFY(err, fl->dsp_proc_init == 1); if (err) { pr_err("adsprpc: ERROR: %s: user application %s trying to unmap without initialization\n", __func__, current->comm); err = EBADR; return err; } mutex_lock(&fl->internal_map_mutex); spin_lock(&fl->hlock); hlist_for_each_entry_safe(rbuf, n, &fl->remote_bufs, hn_rem) { if (rbuf->raddr && ((rbuf->flags == ADSP_MMAP_ADD_PAGES) || (rbuf->flags == ADSP_MMAP_ADD_PAGES_LLC))) { if ((rbuf->raddr == ud->vaddrout) && (rbuf->size == ud->size)) { free = rbuf; break; } } } spin_unlock(&fl->hlock); if (free) { VERIFY(err, !fastrpc_munmap_on_dsp(fl, free->raddr, free->phys, free->size, free->flags)); if (err) goto bail; fastrpc_buf_free(rbuf, 0); mutex_unlock(&fl->internal_map_mutex); return err; } mutex_lock(&fl->map_mutex); VERIFY(err, !fastrpc_mmap_remove(fl, ud->vaddrout, ud->size, &map)); mutex_unlock(&fl->map_mutex); if (err) goto bail; VERIFY(err, map != NULL); if (err) { err = -EINVAL; goto bail; } VERIFY(err, !fastrpc_munmap_on_dsp(fl, map->raddr, map->phys, map->size, map->flags)); if (err) goto bail; mutex_lock(&fl->map_mutex); fastrpc_mmap_free(map, 0); mutex_unlock(&fl->map_mutex); bail: if (err && map) { mutex_lock(&fl->map_mutex); if ((map->flags == ADSP_MMAP_HEAP_ADDR) || (map->flags == ADSP_MMAP_REMOTE_HEAP_ADDR)) fastrpc_mmap_add_global(map); else fastrpc_mmap_add(map); mutex_unlock(&fl->map_mutex); } mutex_unlock(&fl->internal_map_mutex); return err; } /* * fastrpc_internal_munmap_fd can only be used for buffers * mapped with persist attributes. This can only be called * once for any persist buffer */ static int fastrpc_internal_munmap_fd(struct fastrpc_file *fl, struct fastrpc_ioctl_munmap_fd *ud) { int err = 0; struct fastrpc_mmap *map = NULL; VERIFY(err, (fl && ud)); if (err) return err; VERIFY(err, fl->dsp_proc_init == 1); if (err) { pr_err("adsprpc: ERROR: %s: user application %s trying to unmap without initialization\n", __func__, current->comm); err = EBADR; return err; } mutex_lock(&fl->internal_map_mutex); mutex_lock(&fl->map_mutex); if (fastrpc_mmap_find(fl, ud->fd, ud->va, ud->len, 0, 0, &map)) { pr_err("adsprpc: mapping not found to unmap fd 0x%x, va 0x%llx, len 0x%x\n", ud->fd, (unsigned long long)ud->va, (unsigned int)ud->len); err = -1; mutex_unlock(&fl->map_mutex); goto bail; } if (map && (map->attr & FASTRPC_ATTR_KEEP_MAP)) { map->attr = map->attr & (~FASTRPC_ATTR_KEEP_MAP); fastrpc_mmap_free(map, 0); } mutex_unlock(&fl->map_mutex); bail: mutex_unlock(&fl->internal_map_mutex); return err; } static int fastrpc_internal_mmap(struct fastrpc_file *fl, struct fastrpc_ioctl_mmap *ud) { struct fastrpc_mmap *map = NULL; struct fastrpc_buf *rbuf = NULL; unsigned long dma_attr = 0; uintptr_t raddr = 0; int err = 0; VERIFY(err, fl->dsp_proc_init == 1); if (err) { pr_err("adsprpc: ERROR: %s: user application %s trying to map without initialization\n", __func__, current->comm); err = EBADR; return err; } mutex_lock(&fl->internal_map_mutex); if ((ud->flags == ADSP_MMAP_ADD_PAGES) || (ud->flags == ADSP_MMAP_ADD_PAGES_LLC)) { if (ud->vaddrin) { err = EINVAL; pr_err("adsprpc: %s: %s: ERROR: adding user allocated pages is not supported\n", current->comm, __func__); goto bail; } dma_attr = DMA_ATTR_EXEC_MAPPING | DMA_ATTR_DELAYED_UNMAP | DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_FORCE_NON_COHERENT; if (ud->flags == ADSP_MMAP_ADD_PAGES_LLC) dma_attr |= DMA_ATTR_IOMMU_USE_UPSTREAM_HINT; err = fastrpc_buf_alloc(fl, ud->size, dma_attr, ud->flags, 1, &rbuf); if (err) goto bail; err = fastrpc_mmap_on_dsp(fl, ud->flags, 0, rbuf->phys, rbuf->size, 0, &raddr); if (err) goto bail; rbuf->raddr = raddr; } else { uintptr_t va_to_dsp; mutex_lock(&fl->map_mutex); VERIFY(err, !fastrpc_mmap_create(fl, ud->fd, 0, (uintptr_t)ud->vaddrin, ud->size, ud->flags, &map)); mutex_unlock(&fl->map_mutex); if (err) goto bail; if (ud->flags == ADSP_MMAP_HEAP_ADDR || ud->flags == ADSP_MMAP_REMOTE_HEAP_ADDR) va_to_dsp = 0; else va_to_dsp = (uintptr_t)map->va; VERIFY(err, 0 == fastrpc_mmap_on_dsp(fl, ud->flags, va_to_dsp, map->phys, map->size, map->refs, &raddr)); if (err) goto bail; map->raddr = raddr; if (ud->flags == ADSP_MMAP_HEAP_ADDR || ud->flags == ADSP_MMAP_REMOTE_HEAP_ADDR) fastrpc_mmap_add_global(map); } ud->vaddrout = raddr; bail: if (err) { if (map) { mutex_lock(&fl->map_mutex); fastrpc_mmap_free(map, 0); mutex_unlock(&fl->map_mutex); } if (!IS_ERR_OR_NULL(rbuf)) fastrpc_buf_free(rbuf, 0); } mutex_unlock(&fl->internal_map_mutex); return err; } static void fastrpc_context_list_dtor(struct fastrpc_file *fl); static int fastrpc_session_alloc_locked(struct fastrpc_channel_ctx *chan, int secure, struct fastrpc_session_ctx **session) { struct fastrpc_apps *me = &gfa; uint64_t idx = 0; int err = 0; if (chan->sesscount) { for (idx = 0; idx < chan->sesscount; ++idx) { if (!chan->session[idx].used && chan->session[idx].smmu.secure == secure) { chan->session[idx].used = 1; break; } } if (idx >= chan->sesscount) { err = EUSERS; pr_err("adsprpc: ERROR %d: %s: max concurrent sessions limit (%d) already reached on %s\n", err, __func__, chan->sesscount, chan->subsys); goto bail; } chan->session[idx].smmu.faults = 0; } else { VERIFY(err, me->dev != NULL); if (err) { err = -ECONNREFUSED; goto bail; } chan->session[0].dev = me->dev; chan->session[0].smmu.dev = me->dev; } *session = &chan->session[idx]; bail: return err; } static inline int get_cid_from_rpdev(struct rpmsg_device *rpdev) { int err = 0, cid = -1; VERIFY(err, !IS_ERR_OR_NULL(rpdev)); if (err) return -EINVAL; if (!strcmp(rpdev->dev.parent->of_node->name, "cdsp")) cid = CDSP_DOMAIN_ID; else if (!strcmp(rpdev->dev.parent->of_node->name, "adsp")) cid = ADSP_DOMAIN_ID; else if (!strcmp(rpdev->dev.parent->of_node->name, "dsps")) cid = SDSP_DOMAIN_ID; else if (!strcmp(rpdev->dev.parent->of_node->name, "mdsp")) cid = MDSP_DOMAIN_ID; return cid; } static int fastrpc_rpmsg_probe(struct rpmsg_device *rpdev) { int err = 0; int cid = -1; VERIFY(err, !IS_ERR_OR_NULL(rpdev)); if (err) return -EINVAL; cid = get_cid_from_rpdev(rpdev); VERIFY(err, cid >= ADSP_DOMAIN_ID && cid < NUM_CHANNELS); if (err) goto bail; mutex_lock(&gcinfo[cid].rpmsg_mutex); gcinfo[cid].rpdev = rpdev; mutex_unlock(&gcinfo[cid].rpmsg_mutex); pr_info("adsprpc: %s: opened rpmsg channel for %s\n", __func__, gcinfo[cid].subsys); #if IS_ENABLED(CONFIG_ADSPRPC_DEBUG) if (!gcinfo[cid].ipc_log_ctx) gcinfo[cid].ipc_log_ctx = ipc_log_context_create(FASTRPC_GLINK_LOG_PAGES, gcinfo[cid].name, 0); if (!gcinfo[cid].ipc_log_ctx) pr_warn("adsprpc: %s: failed to create IPC log context for %s\n", __func__, gcinfo[cid].subsys); else pr_info("adsprpc: %s: enabled IPC logging for %s\n", __func__, gcinfo[cid].subsys); #endif bail: if (err) pr_err("adsprpc: rpmsg probe of %s cid %d failed\n", rpdev->dev.parent->of_node->name, cid); return err; } static void fastrpc_rpmsg_remove(struct rpmsg_device *rpdev) { int err = 0; int cid = -1; struct fastrpc_apps *me = &gfa; VERIFY(err, !IS_ERR_OR_NULL(rpdev)); if (err) return; cid = get_cid_from_rpdev(rpdev); VERIFY(err, cid >= ADSP_DOMAIN_ID && cid < NUM_CHANNELS); if (err) goto bail; mutex_lock(&gcinfo[cid].rpmsg_mutex); gcinfo[cid].rpdev = NULL; mutex_unlock(&gcinfo[cid].rpmsg_mutex); fastrpc_notify_drivers(me, cid); pr_info("adsprpc: %s: closed rpmsg channel of %s\n", __func__, gcinfo[cid].subsys); bail: if (err) pr_err("adsprpc: rpmsg remove of %s cid %d failed\n", rpdev->dev.parent->of_node->name, cid); } static int fastrpc_rpmsg_callback(struct rpmsg_device *rpdev, void *data, int len, void *priv, u32 addr) { struct smq_invoke_rsp *rsp = (struct smq_invoke_rsp *)data; struct smq_invoke_rspv2 *rspv2 = NULL; struct fastrpc_apps *me = &gfa; uint32_t index, rspFlags = 0, earlyWakeTime = 0; int err = 0, cid = -1; struct fastrpc_channel_ctx *chan = NULL; unsigned long irq_flags = 0; cid = get_cid_from_rpdev(rpdev); VERIFY(err, (cid >= ADSP_DOMAIN_ID && cid <= NUM_CHANNELS)); if (err) goto bail; chan = &me->channel[cid]; VERIFY(err, (rsp && len >= sizeof(*rsp))); if (err) goto bail; if (len >= sizeof(struct smq_invoke_rspv2)) rspv2 = (struct smq_invoke_rspv2 *)data; if (rspv2) { earlyWakeTime = rspv2->earlyWakeTime; rspFlags = rspv2->flags; } trace_fastrpc_rpmsg_response(cid, rsp->ctx, rsp->retval, rspFlags, earlyWakeTime); #if IS_ENABLED(CONFIG_ADSPRPC_DEBUG) if (cid >= ADSP_DOMAIN_ID && cid < NUM_CHANNELS) { LOG_FASTRPC_GLINK_MSG(gcinfo[cid].ipc_log_ctx, "recvd pkt %pK (sz %d): ctx 0x%llx, retVal %d, flags %u, earlyWake %u", data, len, rsp->ctx, rsp->retval, rspFlags, earlyWakeTime); } #endif index = (uint32_t)((rsp->ctx & FASTRPC_CTXID_MASK) >> 4); VERIFY(err, index < FASTRPC_CTX_MAX); if (err) goto bail; spin_lock_irqsave(&chan->ctxlock, irq_flags); VERIFY(err, !IS_ERR_OR_NULL(chan->ctxtable[index])); if (err) goto bail_unlock; VERIFY(err, ((chan->ctxtable[index]->ctxid == (rsp->ctx & ~CONTEXT_PD_CHECK)) && chan->ctxtable[index]->magic == FASTRPC_CTX_MAGIC)); if (err) goto bail_unlock; if (rspv2) { VERIFY(err, rspv2->version == FASTRPC_RSP_VERSION2); if (err) goto bail_unlock; } context_notify_user(chan->ctxtable[index], rsp->retval, rspFlags, earlyWakeTime); bail_unlock: spin_unlock_irqrestore(&chan->ctxlock, irq_flags); bail: if (err) pr_err("adsprpc: ERROR: %s: invalid response (data %pK, len %d) from remote subsystem (err %d)\n", __func__, data, len, err); return err; } static int fastrpc_session_alloc(struct fastrpc_channel_ctx *chan, int secure, struct fastrpc_session_ctx **session) { int err = 0; mutex_lock(&chan->smd_mutex); if (!*session) err = fastrpc_session_alloc_locked(chan, secure, session); mutex_unlock(&chan->smd_mutex); return err; } static void fastrpc_session_free(struct fastrpc_channel_ctx *chan, struct fastrpc_session_ctx *session) { mutex_lock(&chan->smd_mutex); session->used = 0; mutex_unlock(&chan->smd_mutex); } static int fastrpc_file_free(struct fastrpc_file *fl) { struct hlist_node *n = NULL; struct fastrpc_mmap *map = NULL, *lmap = NULL; struct fastrpc_perf *perf = NULL, *fperf = NULL; int cid; if (!fl) return 0; cid = fl->cid; (void)fastrpc_release_current_dsp_process(fl); spin_lock(&fl->apps->hlock); hlist_del_init(&fl->hn); spin_unlock(&fl->apps->hlock); kfree(fl->debug_buf); fl->debug_buf_alloced_attempted = 0; if (!fl->sctx) { kfree(fl); return 0; } spin_lock(&fl->hlock); fl->file_close = 1; fl->dsp_process_state = PROCESS_CREATE_DEFAULT; spin_unlock(&fl->hlock); if (!IS_ERR_OR_NULL(fl->init_mem)) fastrpc_buf_free(fl->init_mem, 0); fastrpc_context_list_dtor(fl); fastrpc_cached_buf_list_free(fl); mutex_lock(&fl->map_mutex); do { lmap = NULL; hlist_for_each_entry_safe(map, n, &fl->maps, hn) { hlist_del_init(&map->hn); lmap = map; break; } fastrpc_mmap_free(lmap, 1); } while (lmap); mutex_unlock(&fl->map_mutex); if (fl->sctx) fastrpc_session_free(&fl->apps->channel[cid], fl->sctx); if (fl->secsctx) fastrpc_session_free(&fl->apps->channel[cid], fl->secsctx); mutex_lock(&fl->perf_mutex); do { struct hlist_node *pn = NULL; fperf = NULL; hlist_for_each_entry_safe(perf, pn, &fl->perf, hn) { hlist_del_init(&perf->hn); fperf = perf; break; } kfree(fperf); } while (fperf); fastrpc_remote_buf_list_free(fl); mutex_unlock(&fl->perf_mutex); mutex_destroy(&fl->perf_mutex); mutex_destroy(&fl->map_mutex); mutex_destroy(&fl->internal_map_mutex); mutex_destroy(&fl->pm_qos_mutex); kfree(fl); return 0; } static int fastrpc_device_release(struct inode *inode, struct file *file) { struct fastrpc_file *fl = (struct fastrpc_file *)file->private_data; if (fl) { if (fl->qos_request && pm_qos_request_active(&fl->pm_qos_req)) pm_qos_remove_request(&fl->pm_qos_req); if (fl->debugfs_file != NULL) debugfs_remove(fl->debugfs_file); fastrpc_file_free(fl); file->private_data = NULL; } return 0; } static int fastrpc_debugfs_open(struct inode *inode, struct file *filp) { filp->private_data = inode->i_private; return 0; } static ssize_t fastrpc_debugfs_read(struct file *filp, char __user *buffer, size_t count, loff_t *position) { struct fastrpc_apps *me = &gfa; struct fastrpc_file *fl = filp->private_data; struct hlist_node *n; struct fastrpc_buf *buf = NULL; struct fastrpc_mmap *map = NULL; struct fastrpc_mmap *gmaps = NULL; struct smq_invoke_ctx *ictx = NULL; struct fastrpc_channel_ctx *chan = NULL; unsigned int len = 0; int i, j, sess_used = 0, ret = 0; char *fileinfo = NULL; char single_line[UL_SIZE] = "----------------"; char title[UL_SIZE] = "========================="; fileinfo = kzalloc(DEBUGFS_SIZE, GFP_KERNEL); if (!fileinfo) goto bail; if (fl == NULL) { len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "\n%s %s %s\n", title, " CHANNEL INFO ", title); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%-7s|%-10s|%-15s|%-9s|%-13s\n", "subsys", "sesscount", "subsystemstate", "ssrcount", "session_used"); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "-%s%s%s%s-\n", single_line, single_line, single_line, single_line); for (i = 0; i < NUM_CHANNELS; i++) { sess_used = 0; chan = &gcinfo[i]; len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%-7s", chan->subsys); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "|%-10u", chan->sesscount); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "|%-15d", chan->subsystemstate); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "|%-9u", chan->ssrcount); for (j = 0; j < chan->sesscount; j++) { sess_used += chan->session[j].used; } len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "|%-13d\n", sess_used); } len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "\n%s%s%s\n", "=============", " CMA HEAP ", "=============="); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%-20s|%-20s\n", "addr", "size"); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "--%s%s---\n", single_line, single_line); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "0x%-18llX", me->range.addr); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "|0x%-18llX\n", me->range.size); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "\n==========%s %s %s===========\n", title, " GMAPS ", title); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%-20s|%-20s|%-20s|%-20s\n", "fd", "phys", "size", "va"); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%s%s%s%s%s\n", single_line, single_line, single_line, single_line, single_line); spin_lock(&me->hlock); hlist_for_each_entry_safe(gmaps, n, &me->maps, hn) { len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%-20d|0x%-18llX|0x%-18X|0x%-20lX\n\n", gmaps->fd, gmaps->phys, (uint32_t)gmaps->size, gmaps->va); } spin_unlock(&me->hlock); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%-20s|%-20s|%-20s|%-20s\n", "len", "refs", "raddr", "flags"); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%s%s%s%s%s\n", single_line, single_line, single_line, single_line, single_line); spin_lock(&me->hlock); hlist_for_each_entry_safe(gmaps, n, &me->maps, hn) { len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "0x%-18X|%-20d|%-20lu|%-20u\n", (uint32_t)gmaps->len, gmaps->refs, gmaps->raddr, gmaps->flags); } spin_unlock(&me->hlock); } else { len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "\n%s %13s %d\n", "cid", ":", fl->cid); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%s %12s %d\n", "tgid", ":", fl->tgid); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%s %7s %d\n", "sessionid", ":", fl->sessionid); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%s %8s %u\n", "ssrcount", ":", fl->ssrcount); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%s %14s %d\n", "pd", ":", fl->pd); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%s %9s %s\n", "servloc_name", ":", fl->servloc_name); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%s %6s %d\n", "file_close", ":", fl->file_close); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%s %9s %d\n", "profile", ":", fl->profile); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%s %3s %d\n", "smmu.coherent", ":", fl->sctx->smmu.coherent); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%s %4s %d\n", "smmu.enabled", ":", fl->sctx->smmu.enabled); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%s %9s %d\n", "smmu.cb", ":", fl->sctx->smmu.cb); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%s %5s %d\n", "smmu.secure", ":", fl->sctx->smmu.secure); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%s %5s %d\n", "smmu.faults", ":", fl->sctx->smmu.faults); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "\n=======%s %s %s======\n", title, " LIST OF MAPS ", title); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%-20s|%-20s|%-20s\n", "va", "phys", "size"); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%s%s%s%s%s\n", single_line, single_line, single_line, single_line, single_line); mutex_lock(&fl->map_mutex); hlist_for_each_entry_safe(map, n, &fl->maps, hn) { len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "0x%-20lX|0x%-20llX|0x%-20zu\n\n", map->va, map->phys, map->size); } mutex_unlock(&fl->map_mutex); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%-20s|%-20s|%-20s|%-20s\n", "len", "refs", "raddr", "uncached"); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%s%s%s%s%s\n", single_line, single_line, single_line, single_line, single_line); mutex_lock(&fl->map_mutex); hlist_for_each_entry_safe(map, n, &fl->maps, hn) { len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%-20zu|%-20d|0x%-20lX|%-20d\n\n", map->len, map->refs, map->raddr, map->uncached); } mutex_unlock(&fl->map_mutex); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%-20s|%-20s\n", "secure", "attr"); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%s%s%s%s%s\n", single_line, single_line, single_line, single_line, single_line); mutex_lock(&fl->map_mutex); hlist_for_each_entry_safe(map, n, &fl->maps, hn) { len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%-20d|0x%-20lX\n\n", map->secure, map->attr); } mutex_unlock(&fl->map_mutex); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "\n======%s %s %s======\n", title, " LIST OF BUFS ", title); spin_lock(&fl->hlock); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%-19s|%-19s|%-19s\n", "virt", "phys", "size"); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%s%s%s%s%s\n", single_line, single_line, single_line, single_line, single_line); hlist_for_each_entry_safe(buf, n, &fl->cached_bufs, hn) { len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "0x%-17p|0x%-17llX|%-19zu\n", buf->virt, (uint64_t)buf->phys, buf->size); } len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "\n%s %s %s\n", title, " LIST OF PENDING SMQCONTEXTS ", title); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%-20s|%-10s|%-10s|%-10s|%-20s\n", "sc", "pid", "tgid", "used", "ctxid"); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%s%s%s%s%s\n", single_line, single_line, single_line, single_line, single_line); hlist_for_each_entry_safe(ictx, n, &fl->clst.pending, hn) { len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "0x%-18X|%-10d|%-10d|%-10zu|0x%-20llX\n\n", ictx->sc, ictx->pid, ictx->tgid, ictx->used, ictx->ctxid); } len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "\n%s %s %s\n", title, " LIST OF INTERRUPTED SMQCONTEXTS ", title); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%-20s|%-10s|%-10s|%-10s|%-20s\n", "sc", "pid", "tgid", "used", "ctxid"); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%s%s%s%s%s\n", single_line, single_line, single_line, single_line, single_line); hlist_for_each_entry_safe(ictx, n, &fl->clst.interrupted, hn) { len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%-20u|%-20d|%-20d|%-20zu|0x%-20llX\n\n", ictx->sc, ictx->pid, ictx->tgid, ictx->used, ictx->ctxid); } spin_unlock(&fl->hlock); } if (len > DEBUGFS_SIZE) len = DEBUGFS_SIZE; ret = simple_read_from_buffer(buffer, count, position, fileinfo, len); kfree(fileinfo); bail: return ret; } static const struct file_operations debugfs_fops = { .open = fastrpc_debugfs_open, .read = fastrpc_debugfs_read, }; static int fastrpc_channel_open(struct fastrpc_file *fl) { struct fastrpc_apps *me = &gfa; int cid = -1, err = 0; VERIFY(err, fl && fl->sctx && fl->cid >= 0 && fl->cid < NUM_CHANNELS); if (err) { pr_err("adsprpc: ERROR: %s: kernel session not initialized yet for %s\n", __func__, current->comm); err = EBADR; return err; } cid = fl->cid; mutex_lock(&me->channel[cid].rpmsg_mutex); VERIFY(err, NULL != me->channel[cid].rpdev); if (err) { err = -ENOTCONN; mutex_unlock(&me->channel[cid].rpmsg_mutex); goto bail; } mutex_unlock(&me->channel[cid].rpmsg_mutex); mutex_lock(&me->channel[cid].smd_mutex); if (me->channel[cid].ssrcount != me->channel[cid].prevssrcount) { if (me->channel[cid].subsystemstate != SUBSYSTEM_UP) { err = -ENOTCONN; mutex_unlock(&me->channel[cid].smd_mutex); goto bail; } } fl->ssrcount = me->channel[cid].ssrcount; if (cid == ADSP_DOMAIN_ID && me->channel[cid].ssrcount != me->channel[cid].prevssrcount) { mutex_lock(&fl->map_mutex); err = fastrpc_mmap_remove_ssr(fl, 1); mutex_unlock(&fl->map_mutex); if (err) pr_warn("adsprpc: %s: %s: failed to unmap remote heap for %s (err %d)\n", __func__, current->comm, me->channel[cid].subsys, err); me->channel[cid].prevssrcount = me->channel[cid].ssrcount; } mutex_unlock(&me->channel[cid].smd_mutex); bail: return err; } static inline void fastrpc_register_wakeup_source(struct device *dev, const char *client_name, struct wakeup_source **device_wake_source) { struct wakeup_source *wake_source = NULL; wake_source = wakeup_source_register(dev, client_name); if (IS_ERR_OR_NULL(wake_source)) { pr_err("adsprpc: Error: %s: %s: wakeup_source_register failed for dev %s, client %s with err %ld\n", __func__, current->comm, dev_name(dev), client_name, PTR_ERR(wake_source)); return; } *device_wake_source = wake_source; } static int fastrpc_device_open(struct inode *inode, struct file *filp) { int err = 0; struct fastrpc_file *fl = NULL; struct fastrpc_apps *me = &gfa; /* * Indicates the device node opened * MINOR_NUM_DEV or MINOR_NUM_SECURE_DEV */ int dev_minor = MINOR(inode->i_rdev); VERIFY(err, ((dev_minor == MINOR_NUM_DEV) || (dev_minor == MINOR_NUM_SECURE_DEV))); if (err) { pr_err("adsprpc: Invalid dev minor num %d\n", dev_minor); return err; } VERIFY(err, NULL != (fl = kzalloc(sizeof(*fl), GFP_KERNEL))); if (err) return err; context_list_ctor(&fl->clst); spin_lock_init(&fl->hlock); INIT_HLIST_HEAD(&fl->maps); INIT_HLIST_HEAD(&fl->perf); INIT_HLIST_HEAD(&fl->cached_bufs); INIT_HLIST_HEAD(&fl->remote_bufs); INIT_HLIST_NODE(&fl->hn); fl->sessionid = 0; fl->apps = me; fl->mode = FASTRPC_MODE_SERIAL; fl->cid = -1; fl->dev_minor = dev_minor; fl->init_mem = NULL; fl->dsp_process_state = PROCESS_CREATE_DEFAULT; memset(&fl->perf, 0, sizeof(fl->perf)); fl->qos_request = 0; fl->dsp_proc_init = 0; filp->private_data = fl; mutex_init(&fl->internal_map_mutex); mutex_init(&fl->map_mutex); spin_lock(&me->hlock); hlist_add_head(&fl->hn, &me->drivers); spin_unlock(&me->hlock); mutex_init(&fl->perf_mutex); mutex_init(&fl->pm_qos_mutex); init_completion(&fl->shutdown); return 0; } static int fastrpc_set_process_info(struct fastrpc_file *fl) { int err = 0, buf_size = 0; char strpid[PID_SIZE]; char cur_comm[TASK_COMM_LEN]; memcpy(cur_comm, current->comm, TASK_COMM_LEN); cur_comm[TASK_COMM_LEN-1] = '\0'; fl->tgid = current->tgid; snprintf(strpid, PID_SIZE, "%d", current->pid); if (debugfs_root) { buf_size = strlen(cur_comm) + strlen("_") + strlen(strpid) + 1; spin_lock(&fl->hlock); if (fl->debug_buf_alloced_attempted) { spin_unlock(&fl->hlock); return err; } fl->debug_buf_alloced_attempted = 1; spin_unlock(&fl->hlock); fl->debug_buf = kzalloc(buf_size, GFP_KERNEL); if (!fl->debug_buf) { err = -ENOMEM; return err; } snprintf(fl->debug_buf, buf_size, "%.10s%s%d", cur_comm, "_", current->pid); fl->debugfs_file = debugfs_create_file(fl->debug_buf, 0644, debugfs_root, fl, &debugfs_fops); if (IS_ERR_OR_NULL(fl->debugfs_file)) { pr_warn("Error: %s: %s: failed to create debugfs file %s\n", cur_comm, __func__, fl->debug_buf); fl->debugfs_file = NULL; kfree(fl->debug_buf); fl->debug_buf_alloced_attempted = 0; fl->debug_buf = NULL; } } return err; } static int fastrpc_get_info(struct fastrpc_file *fl, uint32_t *info) { int err = 0; uint32_t cid; struct fastrpc_apps *me = &gfa; VERIFY(err, fl != NULL); if (err) goto bail; err = fastrpc_set_process_info(fl); if (err) goto bail; cid = *info; if (fl->cid == -1) { struct fastrpc_channel_ctx *chan = &me->channel[cid]; VERIFY(err, cid < NUM_CHANNELS); if (err) goto bail; /* Check to see if the device node is non-secure */ if (fl->dev_minor == MINOR_NUM_DEV) { /* * If an app is trying to offload to a secure remote * channel by opening the non-secure device node, allow * the access if the subsystem supports unsigned * offload. Untrusted apps will be restricted. */ if (chan->secure == SECURE_CHANNEL && !chan->unsigned_support) { err = -EACCES; goto bail; } } fl->cid = cid; fl->ssrcount = fl->apps->channel[cid].ssrcount; mutex_lock(&fl->apps->channel[cid].smd_mutex); err = fastrpc_session_alloc_locked(&fl->apps->channel[cid], 0, &fl->sctx); mutex_unlock(&fl->apps->channel[cid].smd_mutex); if (err) goto bail; } VERIFY(err, fl->sctx != NULL); if (err) { err = -EBADR; goto bail; } *info = (fl->sctx->smmu.enabled ? 1 : 0); bail: return err; } static int fastrpc_internal_control(struct fastrpc_file *fl, struct fastrpc_ioctl_control *cp) { int err = 0; unsigned int latency; cpumask_t mask; struct fastrpc_apps *me = &gfa; u32 len = me->silvercores.corecount, i = 0; VERIFY(err, !IS_ERR_OR_NULL(fl) && !IS_ERR_OR_NULL(fl->apps)); if (err) goto bail; VERIFY(err, !IS_ERR_OR_NULL(cp)); if (err) goto bail; switch (cp->req) { case FASTRPC_CONTROL_LATENCY: latency = cp->lp.enable == FASTRPC_LATENCY_CTRL_ENB ? fl->apps->latency : PM_QOS_DEFAULT_VALUE; VERIFY(err, latency != 0); if (err) goto bail; cpumask_clear(&mask); for (i = 0; i < len; i++) cpumask_set_cpu(me->silvercores.coreno[i], &mask); fl->pm_qos_req.type = PM_QOS_REQ_AFFINE_CORES; cpumask_copy(&fl->pm_qos_req.cpus_affine, &mask); mutex_lock(&fl->pm_qos_mutex); if (!fl->qos_request) { pm_qos_add_request(&fl->pm_qos_req, PM_QOS_CPU_DMA_LATENCY, latency); fl->qos_request = 1; } else pm_qos_update_request(&fl->pm_qos_req, latency); mutex_unlock(&fl->pm_qos_mutex); /* Ensure CPU feature map updated to DSP for early WakeUp */ fastrpc_send_cpuinfo_to_dsp(fl); break; case FASTRPC_CONTROL_KALLOC: cp->kalloc.kalloc_support = 1; break; case FASTRPC_CONTROL_WAKELOCK: if (fl->dev_minor != MINOR_NUM_SECURE_DEV) { pr_err("adsprpc: %s: %s: PM voting not allowed for non-secure device node %d\n", current->comm, __func__, fl->dev_minor); err = -EPERM; goto bail; } fl->wake_enable = cp->wp.enable; break; case FASTRPC_CONTROL_PM: if (!fl->wake_enable) { /* Kernel PM voting not requested by this application */ err = -EACCES; goto bail; } if (cp->pm.timeout > MAX_PM_TIMEOUT_MS) fl->ws_timeout = MAX_PM_TIMEOUT_MS; else fl->ws_timeout = cp->pm.timeout; VERIFY(err, fl->cid >= 0 && fl->cid < NUM_CHANNELS); if (err) goto bail; fastrpc_pm_awake(fl, gcinfo[fl->cid].secure); break; case FASTRPC_CONTROL_DSPPROCESS_CLEAN: (void)fastrpc_release_current_dsp_process(fl); break; default: err = -EBADRQC; break; } bail: return err; } static int fastrpc_check_pd_status(struct fastrpc_file *fl, char *sloc_name) { int err = 0, session = -1, cid = -1; struct fastrpc_apps *me = &gfa; if (fl->servloc_name && sloc_name && !strcmp(fl->servloc_name, sloc_name)) { err = fastrpc_get_spd_session(sloc_name, &session, &cid); if (err || cid != fl->cid) goto bail; if (!me->channel[cid].spd[session].ispdup) { err = -ENOTCONN; goto bail; } } bail: return err; } static int fastrpc_setmode(unsigned long ioctl_param, struct fastrpc_file *fl) { int err = 0; switch ((uint32_t)ioctl_param) { case FASTRPC_MODE_PARALLEL: case FASTRPC_MODE_SERIAL: fl->mode = (uint32_t)ioctl_param; break; case FASTRPC_MODE_PROFILE: fl->profile = (uint32_t)ioctl_param; break; case FASTRPC_MODE_SESSION: fl->sessionid = 1; fl->tgid |= (1 << SESSION_ID_INDEX); break; default: err = -ENOTTY; break; } return err; } static int fastrpc_getperf(struct fastrpc_ioctl_perf *ioctl_perf, void *param, struct fastrpc_file *fl) { int err = 0; K_COPY_FROM_USER(err, 0, ioctl_perf, param, sizeof(*ioctl_perf)); if (err) goto bail; ioctl_perf->numkeys = PERF_KEY_MAX; if (ioctl_perf->keys) { char *keys = PERF_KEYS; K_COPY_TO_USER(err, 0, (void *)ioctl_perf->keys, keys, strlen(keys)+1); if (err) goto bail; } if (ioctl_perf->data) { struct fastrpc_perf *perf = NULL, *fperf = NULL; struct hlist_node *n = NULL; mutex_lock(&fl->perf_mutex); hlist_for_each_entry_safe(perf, n, &fl->perf, hn) { if (perf->tid == current->pid) { fperf = perf; break; } } mutex_unlock(&fl->perf_mutex); if (fperf) { K_COPY_TO_USER(err, 0, (void *)ioctl_perf->data, fperf, sizeof(*fperf) - sizeof(struct hlist_node)); } } K_COPY_TO_USER(err, 0, param, ioctl_perf, sizeof(*ioctl_perf)); if (err) goto bail; bail: return err; } static int fastrpc_control(struct fastrpc_ioctl_control *cp, void *param, struct fastrpc_file *fl) { int err = 0; K_COPY_FROM_USER(err, 0, cp, param, sizeof(*cp)); if (err) goto bail; VERIFY(err, 0 == (err = fastrpc_internal_control(fl, cp))); if (err) goto bail; if (cp->req == FASTRPC_CONTROL_KALLOC) { K_COPY_TO_USER(err, 0, param, cp, sizeof(*cp)); if (err) goto bail; } bail: return err; } static int fastrpc_get_dsp_info(struct fastrpc_ioctl_dsp_capabilities *dsp_cap, void *param, struct fastrpc_file *fl) { int err = 0; K_COPY_FROM_USER(err, 0, dsp_cap, param, sizeof(struct fastrpc_ioctl_dsp_capabilities)); VERIFY(err, dsp_cap->domain < NUM_CHANNELS); if (err) goto bail; err = fastrpc_get_info_from_kernel(dsp_cap, fl); if (err) goto bail; K_COPY_TO_USER(err, 0, param, dsp_cap, sizeof(struct fastrpc_ioctl_dsp_capabilities)); bail: return err; } static int fastrpc_update_cdsp_support(struct fastrpc_file *fl) { struct fastrpc_ioctl_dsp_capabilities *dsp_query; struct fastrpc_apps *me = &gfa; int err = 0; VERIFY(err, NULL != (dsp_query = kzalloc(sizeof(*dsp_query), GFP_KERNEL))); if (err) goto bail; dsp_query->domain = CDSP_DOMAIN_ID; err = fastrpc_get_info_from_kernel(dsp_query, fl); if (err) goto bail; if (!(dsp_query->dsp_attributes[1])) me->channel[CDSP_DOMAIN_ID].unsigned_support = false; bail: kfree(dsp_query); return err; } static long fastrpc_device_ioctl(struct file *file, unsigned int ioctl_num, unsigned long ioctl_param) { union { struct fastrpc_ioctl_invoke_crc inv; struct fastrpc_ioctl_mmap mmap; struct fastrpc_ioctl_mmap_64 mmap64; struct fastrpc_ioctl_munmap munmap; struct fastrpc_ioctl_munmap_64 munmap64; struct fastrpc_ioctl_munmap_fd munmap_fd; struct fastrpc_ioctl_init_attrs init; struct fastrpc_ioctl_perf perf; struct fastrpc_ioctl_control cp; struct fastrpc_ioctl_dsp_capabilities dsp_cap; } p; union { struct fastrpc_ioctl_mmap mmap; struct fastrpc_ioctl_munmap munmap; } i; void *param = (char *)ioctl_param; struct fastrpc_file *fl = (struct fastrpc_file *)file->private_data; int size = 0, err = 0; uint32_t info; static bool isquerydone; p.inv.fds = NULL; p.inv.attrs = NULL; p.inv.crc = NULL; err = fastrpc_check_pd_status(fl, AUDIO_PDR_SERVICE_LOCATION_CLIENT_NAME); if (err) goto bail; spin_lock(&fl->hlock); if (fl->file_close == 1) { err = EBADF; pr_warn("adsprpc: fastrpc_device_release is happening, So not sending any new requests to DSP\n"); spin_unlock(&fl->hlock); goto bail; } spin_unlock(&fl->hlock); switch (ioctl_num) { case FASTRPC_IOCTL_INVOKE: size = sizeof(struct fastrpc_ioctl_invoke); /* fall through */ case FASTRPC_IOCTL_INVOKE_FD: if (!size) size = sizeof(struct fastrpc_ioctl_invoke_fd); /* fall through */ case FASTRPC_IOCTL_INVOKE_ATTRS: if (!size) size = sizeof(struct fastrpc_ioctl_invoke_attrs); /* fall through */ case FASTRPC_IOCTL_INVOKE_CRC: if (!size) size = sizeof(struct fastrpc_ioctl_invoke_crc); K_COPY_FROM_USER(err, 0, &p.inv, param, size); if (err) goto bail; VERIFY(err, 0 == (err = fastrpc_internal_invoke(fl, fl->mode, 0, &p.inv))); if (err) goto bail; break; case FASTRPC_IOCTL_MMAP: K_COPY_FROM_USER(err, 0, &p.mmap, param, sizeof(p.mmap)); if (err) goto bail; VERIFY(err, 0 == (err = fastrpc_internal_mmap(fl, &p.mmap))); if (err) goto bail; K_COPY_TO_USER(err, 0, param, &p.mmap, sizeof(p.mmap)); if (err) goto bail; break; case FASTRPC_IOCTL_MUNMAP: K_COPY_FROM_USER(err, 0, &p.munmap, param, sizeof(p.munmap)); if (err) goto bail; VERIFY(err, 0 == (err = fastrpc_internal_munmap(fl, &p.munmap))); if (err) goto bail; break; case FASTRPC_IOCTL_MMAP_64: K_COPY_FROM_USER(err, 0, &p.mmap64, param, sizeof(p.mmap64)); if (err) goto bail; get_fastrpc_ioctl_mmap_64(&p.mmap64, &i.mmap); VERIFY(err, 0 == (err = fastrpc_internal_mmap(fl, &i.mmap))); if (err) goto bail; put_fastrpc_ioctl_mmap_64(&p.mmap64, &i.mmap); K_COPY_TO_USER(err, 0, param, &p.mmap64, sizeof(p.mmap64)); if (err) goto bail; break; case FASTRPC_IOCTL_MUNMAP_64: K_COPY_FROM_USER(err, 0, &p.munmap64, param, sizeof(p.munmap64)); if (err) goto bail; get_fastrpc_ioctl_munmap_64(&p.munmap64, &i.munmap); VERIFY(err, 0 == (err = fastrpc_internal_munmap(fl, &i.munmap))); if (err) goto bail; break; case FASTRPC_IOCTL_MUNMAP_FD: K_COPY_FROM_USER(err, 0, &p.munmap_fd, param, sizeof(p.munmap_fd)); if (err) goto bail; VERIFY(err, 0 == (err = fastrpc_internal_munmap_fd(fl, &p.munmap_fd))); if (err) goto bail; break; case FASTRPC_IOCTL_SETMODE: err = fastrpc_setmode(ioctl_param, fl); break; case FASTRPC_IOCTL_GETPERF: err = fastrpc_getperf(&p.perf, param, fl); break; case FASTRPC_IOCTL_CONTROL: err = fastrpc_control(&p.cp, param, fl); break; case FASTRPC_IOCTL_GETINFO: K_COPY_FROM_USER(err, 0, &info, param, sizeof(info)); if (err) goto bail; VERIFY(err, 0 == (err = fastrpc_get_info(fl, &info))); if (err) goto bail; K_COPY_TO_USER(err, 0, param, &info, sizeof(info)); if (err) goto bail; break; case FASTRPC_IOCTL_INIT: p.init.attrs = 0; p.init.siglen = 0; size = sizeof(struct fastrpc_ioctl_init); /* fall through */ case FASTRPC_IOCTL_INIT_ATTRS: if (!size) size = sizeof(struct fastrpc_ioctl_init_attrs); K_COPY_FROM_USER(err, 0, &p.init, param, size); if (err) goto bail; VERIFY(err, p.init.init.filelen >= 0 && p.init.init.filelen < INIT_FILELEN_MAX); if (err) goto bail; VERIFY(err, p.init.init.memlen >= 0 && p.init.init.memlen < INIT_MEMLEN_MAX); if (err) goto bail; VERIFY(err, 0 == (err = fastrpc_init_process(fl, &p.init))); if (err) goto bail; if ((fl->cid == CDSP_DOMAIN_ID) && !isquerydone) { if (!fastrpc_update_cdsp_support(fl)) isquerydone = true; } break; case FASTRPC_IOCTL_GET_DSP_INFO: err = fastrpc_get_dsp_info(&p.dsp_cap, param, fl); break; default: err = -ENOTTY; break; } bail: return err; } static int fastrpc_restart_notifier_cb(struct notifier_block *nb, unsigned long code, void *data) { struct fastrpc_apps *me = &gfa; struct fastrpc_channel_ctx *ctx; struct fastrpc_file *fl; struct hlist_node *n; struct notif_data *notifdata = (struct notif_data *)data; int cid = -1; ctx = container_of(nb, struct fastrpc_channel_ctx, nb); cid = ctx - &me->channel[0]; if (code == SUBSYS_BEFORE_SHUTDOWN) { pr_info("adsprpc: %s: %s subsystem is restarting\n", __func__, gcinfo[cid].subsys); mutex_lock(&me->channel[cid].smd_mutex); ctx->ssrcount++; ctx->subsystemstate = SUBSYSTEM_RESTARTING; mutex_unlock(&me->channel[cid].smd_mutex); } else if (code == SUBSYS_AFTER_SHUTDOWN) { pr_info("adsprpc: %s: %s subsystem is down\n", __func__, gcinfo[cid].subsys); spin_lock(&me->hlock); hlist_for_each_entry_safe(fl, n, &me->drivers, hn) { if (fl->cid != cid) continue; complete(&fl->shutdown); } spin_unlock(&me->hlock); ctx->subsystemstate = SUBSYSTEM_DOWN; } else if (code == SUBSYS_RAMDUMP_NOTIFICATION) { if (cid == RH_CID) { if (me->ramdump_handle) me->channel[RH_CID].ramdumpenabled = 1; } pr_info("adsprpc: %s: received RAMDUMP notification for %s\n", __func__, gcinfo[cid].subsys); } else if (code == SUBSYS_BEFORE_POWERUP) { if (cid == RH_CID && notifdata->enable_ramdump) { if (me->ramdump_handle && me->channel[RH_CID] .ramdumpenabled) { me->enable_ramdump = true; me->channel[RH_CID].ramdumpenabled = 0; } } } else if (code == SUBSYS_AFTER_POWERUP) { pr_info("adsprpc: %s: %s subsystem is up\n", __func__, gcinfo[cid].subsys); ctx->subsystemstate = SUBSYSTEM_UP; } return NOTIFY_DONE; } static int fastrpc_pdr_notifier_cb(struct notifier_block *pdrnb, unsigned long code, void *data) { struct fastrpc_apps *me = &gfa; struct fastrpc_static_pd *spd; struct notif_data *notifdata = (struct notif_data *)data; spd = container_of(pdrnb, struct fastrpc_static_pd, pdrnb); if (code == SERVREG_NOTIF_SERVICE_STATE_DOWN_V01) { pr_info("adsprpc: %s: %s (%s) is down for PDR on %s\n", __func__, spd->spdname, spd->servloc_name, gcinfo[spd->cid].subsys); mutex_lock(&me->channel[spd->cid].smd_mutex); spd->pdrcount++; spd->ispdup = 0; mutex_unlock(&me->channel[spd->cid].smd_mutex); if (!strcmp(spd->servloc_name, AUDIO_PDR_SERVICE_LOCATION_CLIENT_NAME)) me->staticpd_flags = 0; fastrpc_notify_pdr_drivers(me, spd->servloc_name); } else if (code == SUBSYS_RAMDUMP_NOTIFICATION) { if (spd->cid == RH_CID) { if (spd->cid == RH_CID && me->ramdump_handle) me->channel[RH_CID].ramdumpenabled = 1; } pr_info("adsprpc: %s: received %s RAMDUMP notification for %s (%s)\n", __func__, gcinfo[spd->cid].subsys, spd->spdname, spd->servloc_name); } else if (code == SUBSYS_BEFORE_POWERUP) { if (spd->cid == RH_CID && notifdata->enable_ramdump) { if (me->ramdump_handle && me->channel[RH_CID] .ramdumpenabled) me->enable_ramdump = true; me->channel[RH_CID].ramdumpenabled = 0; } } else if (code == SERVREG_NOTIF_SERVICE_STATE_UP_V01) { pr_info("adsprpc: %s: %s (%s) is up on %s\n", __func__, spd->spdname, spd->servloc_name, gcinfo[spd->cid].subsys); spd->ispdup = 1; } return NOTIFY_DONE; } static int fastrpc_get_service_location_notify(struct notifier_block *nb, unsigned long opcode, void *data) { struct fastrpc_static_pd *spd; struct pd_qmi_client_data *pdr = data; int curr_state = 0, i = 0; spd = container_of(nb, struct fastrpc_static_pd, get_service_nb); if (opcode == LOCATOR_DOWN) { pr_warn("adsprpc: %s: PDR notifier locator for %s is down for %s\n", __func__, gcinfo[spd->cid].subsys, spd->servloc_name); return NOTIFY_DONE; } for (i = 0; i < pdr->total_domains; i++) { if ((!strcmp(spd->servloc_name, AUDIO_PDR_SERVICE_LOCATION_CLIENT_NAME)) && (!strcmp(pdr->domain_list[i].name, ADSP_AUDIOPD_NAME))) { goto pdr_register; } else if ((!strcmp(spd->servloc_name, SENSORS_PDR_ADSP_SERVICE_LOCATION_CLIENT_NAME)) && (!strcmp(pdr->domain_list[i].name, ADSP_SENSORPD_NAME))) { goto pdr_register; } else if ((!strcmp(spd->servloc_name, SENSORS_PDR_SLPI_SERVICE_LOCATION_CLIENT_NAME)) && (!strcmp(pdr->domain_list[i].name, SLPI_SENSORPD_NAME))) { goto pdr_register; } } return NOTIFY_DONE; pdr_register: if (!spd->pdrhandle) { spd->pdrhandle = service_notif_register_notifier( pdr->domain_list[i].name, pdr->domain_list[i].instance_id, &spd->pdrnb, &curr_state); if (IS_ERR_OR_NULL(spd->pdrhandle)) pr_warn("adsprpc: %s: PDR notifier for %s register failed for %s (%s) with err %ld\n", __func__, gcinfo[spd->cid].subsys, pdr->domain_list[i].name, spd->servloc_name, PTR_ERR(spd->pdrhandle)); else pr_info("adsprpc: %s: PDR notifier for %s registered for %s (%s)\n", __func__, gcinfo[spd->cid].subsys, pdr->domain_list[i].name, spd->servloc_name); } else { pr_warn("adsprpc: %s: %s (%s) notifier is already registered for %s\n", __func__, pdr->domain_list[i].name, spd->servloc_name, gcinfo[spd->cid].subsys); } if (curr_state == SERVREG_NOTIF_SERVICE_STATE_UP_V01) { pr_info("adsprpc: %s: %s (%s) PDR service for %s is up\n", __func__, spd->servloc_name, pdr->domain_list[i].name, gcinfo[spd->cid].subsys); spd->ispdup = 1; } else if (curr_state == SERVREG_NOTIF_SERVICE_STATE_UNINIT_V01) { pr_info("adsprpc: %s: %s (%s) PDR service for %s is uninitialized\n", __func__, spd->servloc_name, pdr->domain_list[i].name, gcinfo[spd->cid].subsys); } return NOTIFY_DONE; } static const struct file_operations fops = { .open = fastrpc_device_open, .release = fastrpc_device_release, .unlocked_ioctl = fastrpc_device_ioctl, .compat_ioctl = compat_fastrpc_device_ioctl, }; static const struct of_device_id fastrpc_match_table[] = { { .compatible = "qcom,msm-fastrpc-adsp", }, { .compatible = "qcom,msm-fastrpc-compute", }, { .compatible = "qcom,msm-fastrpc-compute-cb", }, { .compatible = "qcom,msm-fastrpc-legacy-compute", }, { .compatible = "qcom,msm-fastrpc-legacy-compute-cb", }, { .compatible = "qcom,msm-adsprpc-mem-region", }, {} }; static int fastrpc_cb_probe(struct device *dev) { struct fastrpc_channel_ctx *chan; struct fastrpc_session_ctx *sess; struct of_phandle_args iommuspec; struct fastrpc_apps *me = &gfa; const char *name; int err = 0, cid = -1, i = 0; u32 sharedcb_count = 0, j = 0; uint32_t dma_addr_pool[2] = {0, 0}; VERIFY(err, NULL != (name = of_get_property(dev->of_node, "label", NULL))); if (err) goto bail; for (i = 0; i < NUM_CHANNELS; i++) { if (!gcinfo[i].name) continue; if (!strcmp(name, gcinfo[i].name)) break; } VERIFY(err, i < NUM_CHANNELS); if (err) goto bail; cid = i; chan = &gcinfo[i]; VERIFY(err, chan->sesscount < NUM_SESSIONS); if (err) goto bail; err = of_parse_phandle_with_args(dev->of_node, "iommus", "#iommu-cells", 0, &iommuspec); if (err) { pr_err("adsprpc: %s: parsing iommu arguments failed for %s with err %d\n", __func__, dev_name(dev), err); goto bail; } sess = &chan->session[chan->sesscount]; sess->used = 0; sess->smmu.coherent = of_property_read_bool(dev->of_node, "dma-coherent"); sess->smmu.secure = of_property_read_bool(dev->of_node, "qcom,secure-context-bank"); sess->smmu.cb = iommuspec.args[0] & 0xf; sess->smmu.dev = dev; sess->smmu.dev_name = dev_name(dev); sess->smmu.enabled = 1; if (!sess->smmu.dev->dma_parms) sess->smmu.dev->dma_parms = devm_kzalloc(sess->smmu.dev, sizeof(*sess->smmu.dev->dma_parms), GFP_KERNEL); dma_set_max_seg_size(sess->smmu.dev, DMA_BIT_MASK(32)); dma_set_seg_boundary(sess->smmu.dev, (unsigned long)DMA_BIT_MASK(64)); of_property_read_u32_array(dev->of_node, "qcom,iommu-dma-addr-pool", dma_addr_pool, 2); me->max_size_limit = (dma_addr_pool[1] == 0 ? 0x78000000 : dma_addr_pool[1]); if (of_get_property(dev->of_node, "shared-cb", NULL) != NULL) { err = of_property_read_u32(dev->of_node, "shared-cb", &sharedcb_count); if (err) goto bail; if (sharedcb_count > 0) { struct fastrpc_session_ctx *dup_sess; for (j = 1; j < sharedcb_count && chan->sesscount < NUM_SESSIONS; j++) { chan->sesscount++; dup_sess = &chan->session[chan->sesscount]; memcpy(dup_sess, sess, sizeof(struct fastrpc_session_ctx)); } } } chan->sesscount++; if (debugfs_root) { debugfs_global_file = debugfs_create_file("global", 0644, debugfs_root, NULL, &debugfs_fops); if (IS_ERR_OR_NULL(debugfs_global_file)) { pr_warn("Error: %s: %s: failed to create debugfs global file\n", current->comm, __func__); debugfs_global_file = NULL; } } bail: return err; } static int fastrpc_cb_legacy_probe(struct device *dev) { struct fastrpc_channel_ctx *chan; struct fastrpc_session_ctx *first_sess = NULL, *sess = NULL; struct fastrpc_apps *me = &gfa; const char *name; unsigned int *sids = NULL, sids_size = 0; int err = 0, ret = 0, i; uint32_t dma_addr_pool[2] = {0, 0}; VERIFY(err, NULL != (name = of_get_property(dev->of_node, "label", NULL))); if (err) goto bail; for (i = 0; i < NUM_CHANNELS; i++) { if (!gcinfo[i].name) continue; if (!strcmp(name, gcinfo[i].name)) break; } VERIFY(err, i < NUM_CHANNELS); if (err) goto bail; chan = &gcinfo[i]; VERIFY(err, chan->sesscount < NUM_SESSIONS); if (err) goto bail; first_sess = &chan->session[chan->sesscount]; VERIFY(err, NULL != of_get_property(dev->of_node, "sids", &sids_size)); if (err) goto bail; VERIFY(err, NULL != (sids = kzalloc(sids_size, GFP_KERNEL))); if (err) goto bail; ret = of_property_read_u32_array(dev->of_node, "sids", sids, sids_size/sizeof(unsigned int)); if (ret) goto bail; if (err) goto bail; for (i = 0; i < sids_size/sizeof(unsigned int); i++) { VERIFY(err, chan->sesscount < NUM_SESSIONS); if (err) goto bail; sess = &chan->session[chan->sesscount]; sess->smmu.cb = sids[i]; sess->smmu.dev = dev; sess->smmu.dev_name = dev_name(dev); sess->smmu.enabled = 1; sess->used = 0; sess->smmu.coherent = false; sess->smmu.secure = false; chan->sesscount++; if (!sess->smmu.dev->dma_parms) sess->smmu.dev->dma_parms = devm_kzalloc(sess->smmu.dev, sizeof(*sess->smmu.dev->dma_parms), GFP_KERNEL); dma_set_max_seg_size(sess->smmu.dev, DMA_BIT_MASK(32)); dma_set_seg_boundary(sess->smmu.dev, (unsigned long)DMA_BIT_MASK(64)); } of_property_read_u32_array(dev->of_node, "qcom,iommu-dma-addr-pool", dma_addr_pool, 2); me->max_size_limit = (dma_addr_pool[1] == 0 ? 0x78000000 : dma_addr_pool[1]); bail: kfree(sids); return err; } static void init_secure_vmid_list(struct device *dev, char *prop_name, struct secure_vm *destvm) { int err = 0; u32 len = 0, i = 0; u32 *rhvmlist = NULL; u32 *rhvmpermlist = NULL; if (!of_find_property(dev->of_node, prop_name, &len)) goto bail; if (len == 0) goto bail; len /= sizeof(u32); VERIFY(err, NULL != (rhvmlist = kcalloc(len, sizeof(u32), GFP_KERNEL))); if (err) goto bail; VERIFY(err, NULL != (rhvmpermlist = kcalloc(len, sizeof(u32), GFP_KERNEL))); if (err) goto bail; for (i = 0; i < len; i++) { err = of_property_read_u32_index(dev->of_node, prop_name, i, &rhvmlist[i]); rhvmpermlist[i] = PERM_READ | PERM_WRITE | PERM_EXEC; pr_info("adsprpc: %s: secure VMID = %d\n", __func__, rhvmlist[i]); if (err) { pr_err("adsprpc: %s: failed to read VMID\n", __func__); goto bail; } } destvm->vmid = rhvmlist; destvm->vmperm = rhvmpermlist; destvm->vmcount = len; bail: if (err) { kfree(rhvmlist); kfree(rhvmpermlist); } } static void init_qos_cores_list(struct device *dev, char *prop_name, struct qos_cores *silvercores) { int err = 0; u32 len = 0, i = 0; u32 *coreslist = NULL; if (!of_find_property(dev->of_node, prop_name, &len)) goto bail; if (len == 0) goto bail; len /= sizeof(u32); VERIFY(err, NULL != (coreslist = kcalloc(len, sizeof(u32), GFP_KERNEL))); if (err) goto bail; for (i = 0; i < len; i++) { err = of_property_read_u32_index(dev->of_node, prop_name, i, &coreslist[i]); if (err) { pr_err("adsprpc: %s: failed to read QOS cores list\n", __func__); goto bail; } } silvercores->coreno = coreslist; silvercores->corecount = len; bail: if (err) { kfree(coreslist); } } static void configure_secure_channels(uint32_t secure_domains) { struct fastrpc_apps *me = &gfa; int ii = 0; /* * secure_domains contains the bitmask of the secure channels * Bit 0 - ADSP * Bit 1 - MDSP * Bit 2 - SLPI * Bit 3 - CDSP */ for (ii = ADSP_DOMAIN_ID; ii <= CDSP_DOMAIN_ID; ++ii) { int secure = (secure_domains >> ii) & 0x01; me->channel[ii].secure = secure; } } static int fastrpc_probe(struct platform_device *pdev) { int err = 0; struct fastrpc_apps *me = &gfa; struct device *dev = &pdev->dev; struct smq_phy_page range; struct device_node *ion_node, *node; struct platform_device *ion_pdev; struct cma *cma; uint32_t val; int ret = 0; uint32_t secure_domains; int session = -1, cid = -1; if (of_device_is_compatible(dev->of_node, "qcom,msm-fastrpc-compute")) { init_secure_vmid_list(dev, "qcom,adsp-remoteheap-vmid", &gcinfo[0].rhvm); init_qos_cores_list(dev, "qcom,qos-cores", &me->silvercores); of_property_read_u32(dev->of_node, "qcom,rpc-latency-us", &me->latency); if (of_get_property(dev->of_node, "qcom,secure-domains", NULL) != NULL) { VERIFY(err, !of_property_read_u32(dev->of_node, "qcom,secure-domains", &secure_domains)); if (!err) configure_secure_channels(secure_domains); else pr_info("adsprpc: unable to read the domain configuration from dts\n"); } } if (of_device_is_compatible(dev->of_node, "qcom,msm-fastrpc-compute-cb")) return fastrpc_cb_probe(dev); if (of_device_is_compatible(dev->of_node, "qcom,msm-fastrpc-legacy-compute-cb")) return fastrpc_cb_legacy_probe(dev); if (of_device_is_compatible(dev->of_node, "qcom,msm-adsprpc-mem-region")) { me->dev = dev; range.addr = 0; ion_node = of_find_compatible_node(NULL, NULL, "qcom,msm-ion"); if (ion_node) { for_each_available_child_of_node(ion_node, node) { if (of_property_read_u32(node, "reg", &val)) continue; if (val != ION_ADSP_HEAP_ID) continue; ion_pdev = of_find_device_by_node(node); if (!ion_pdev) break; cma = dev_get_cma_area(&ion_pdev->dev); if (cma) { range.addr = cma_get_base(cma); range.size = (size_t)cma_get_size(cma); } break; } } if (range.addr && !of_property_read_bool(dev->of_node, "restrict-access")) { int srcVM[1] = {VMID_HLOS}; int destVM[4] = {VMID_HLOS, VMID_MSS_MSA, VMID_SSC_Q6, VMID_ADSP_Q6}; int destVMperm[4] = {PERM_READ | PERM_WRITE | PERM_EXEC, PERM_READ | PERM_WRITE | PERM_EXEC, PERM_READ | PERM_WRITE | PERM_EXEC, PERM_READ | PERM_WRITE | PERM_EXEC, }; err = hyp_assign_phys(range.addr, range.size, srcVM, 1, destVM, destVMperm, 4); if (err) goto bail; me->range.addr = range.addr; me->range.size = range.size; } me->ramdump_handle = create_ramdump_device("adsp_rh", &pdev->dev); return 0; } me->legacy_remote_heap = of_property_read_bool(dev->of_node, "qcom,fastrpc-legacy-remote-heap"); if (of_property_read_bool(dev->of_node, "qcom,fastrpc-adsp-audio-pdr")) { err = fastrpc_get_spd_session( AUDIO_PDR_SERVICE_LOCATION_CLIENT_NAME, &session, &cid); if (err) goto spdbail; me->channel[cid].spd[session].get_service_nb.notifier_call = fastrpc_get_service_location_notify; ret = get_service_location( AUDIO_PDR_SERVICE_LOCATION_CLIENT_NAME, AUDIO_PDR_ADSP_SERVICE_NAME, &me->channel[cid].spd[session].get_service_nb); if (ret) pr_warn("adsprpc: %s: get service location failed with %d for %s (%s)\n", __func__, ret, AUDIO_PDR_ADSP_SERVICE_NAME, AUDIO_PDR_SERVICE_LOCATION_CLIENT_NAME); else pr_info("adsprpc: %s: service location enabled for %s (%s)\n", __func__, AUDIO_PDR_ADSP_SERVICE_NAME, AUDIO_PDR_SERVICE_LOCATION_CLIENT_NAME); } if (of_property_read_bool(dev->of_node, "qcom,fastrpc-adsp-sensors-pdr")) { err = fastrpc_get_spd_session( SENSORS_PDR_ADSP_SERVICE_LOCATION_CLIENT_NAME, &session, &cid); if (err) goto spdbail; me->channel[cid].spd[session].get_service_nb.notifier_call = fastrpc_get_service_location_notify; ret = get_service_location( SENSORS_PDR_ADSP_SERVICE_LOCATION_CLIENT_NAME, SENSORS_PDR_ADSP_SERVICE_NAME, &me->channel[cid].spd[session].get_service_nb); if (ret) pr_warn("adsprpc: %s: get service location failed with %d for %s (%s)\n", __func__, ret, SENSORS_PDR_SLPI_SERVICE_NAME, SENSORS_PDR_ADSP_SERVICE_LOCATION_CLIENT_NAME); else pr_info("adsprpc: %s: service location enabled for %s (%s)\n", __func__, SENSORS_PDR_SLPI_SERVICE_NAME, SENSORS_PDR_ADSP_SERVICE_LOCATION_CLIENT_NAME); } if (of_property_read_bool(dev->of_node, "qcom,fastrpc-slpi-sensors-pdr")) { err = fastrpc_get_spd_session( SENSORS_PDR_SLPI_SERVICE_LOCATION_CLIENT_NAME, &session, &cid); if (err) goto spdbail; me->channel[cid].spd[session].get_service_nb.notifier_call = fastrpc_get_service_location_notify; ret = get_service_location( SENSORS_PDR_SLPI_SERVICE_LOCATION_CLIENT_NAME, SENSORS_PDR_SLPI_SERVICE_NAME, &me->channel[cid].spd[session].get_service_nb); if (ret) pr_warn("adsprpc: %s: get service location failed with %d for %s (%s)\n", __func__, ret, SENSORS_PDR_SLPI_SERVICE_NAME, SENSORS_PDR_SLPI_SERVICE_LOCATION_CLIENT_NAME); else pr_info("adsprpc: %s: service location enabled for %s (%s)\n", __func__, SENSORS_PDR_SLPI_SERVICE_NAME, SENSORS_PDR_SLPI_SERVICE_LOCATION_CLIENT_NAME); } spdbail: err = of_platform_populate(pdev->dev.of_node, fastrpc_match_table, NULL, &pdev->dev); if (err) goto bail; bail: return err; } static void fastrpc_deinit(void) { struct fastrpc_channel_ctx *chan = gcinfo; int i, j; for (i = 0; i < NUM_CHANNELS; i++, chan++) { for (j = 0; j < NUM_SESSIONS; j++) { struct fastrpc_session_ctx *sess = &chan->session[j]; if (sess->smmu.dev) sess->smmu.dev = NULL; } kfree(chan->rhvm.vmid); kfree(chan->rhvm.vmperm); } } static struct platform_driver fastrpc_driver = { .probe = fastrpc_probe, .driver = { .name = "fastrpc", .of_match_table = fastrpc_match_table, .suppress_bind_attrs = true, }, }; static const struct rpmsg_device_id fastrpc_rpmsg_match[] = { { FASTRPC_GLINK_GUID }, { FASTRPC_SMD_GUID }, }; static const struct of_device_id fastrpc_rpmsg_of_match[] = { { .compatible = "qcom,msm-fastrpc-rpmsg" }, { }, }; MODULE_DEVICE_TABLE(of, fastrpc_rpmsg_of_match); static struct rpmsg_driver fastrpc_rpmsg_client = { .id_table = fastrpc_rpmsg_match, .probe = fastrpc_rpmsg_probe, .remove = fastrpc_rpmsg_remove, .callback = fastrpc_rpmsg_callback, .drv = { .name = "qcom,msm_fastrpc_rpmsg", .of_match_table = fastrpc_rpmsg_of_match, }, }; static int __init fastrpc_device_init(void) { struct fastrpc_apps *me = &gfa; struct device *dev = NULL; struct device *secure_dev = NULL; int err = 0, i; debugfs_root = debugfs_create_dir("adsprpc", NULL); if (IS_ERR_OR_NULL(debugfs_root)) { pr_warn("Error: %s: %s: failed to create debugfs root dir\n", current->comm, __func__); debugfs_remove_recursive(debugfs_root); debugfs_root = NULL; } memset(me, 0, sizeof(*me)); fastrpc_init(me); me->dev = NULL; me->legacy_remote_heap = 0; VERIFY(err, 0 == platform_driver_register(&fastrpc_driver)); if (err) goto register_bail; VERIFY(err, 0 == alloc_chrdev_region(&me->dev_no, 0, NUM_CHANNELS, DEVICE_NAME)); if (err) goto alloc_chrdev_bail; cdev_init(&me->cdev, &fops); me->cdev.owner = THIS_MODULE; VERIFY(err, 0 == cdev_add(&me->cdev, MKDEV(MAJOR(me->dev_no), 0), NUM_DEVICES)); if (err) goto cdev_init_bail; me->class = class_create(THIS_MODULE, "fastrpc"); VERIFY(err, !IS_ERR(me->class)); if (err) goto class_create_bail; me->compat = (fops.compat_ioctl == NULL) ? 0 : 1; /* * Create devices and register with sysfs * Create first device with minor number 0 */ dev = device_create(me->class, NULL, MKDEV(MAJOR(me->dev_no), MINOR_NUM_DEV), NULL, DEVICE_NAME); VERIFY(err, !IS_ERR_OR_NULL(dev)); if (err) goto device_create_bail; /* Create secure device with minor number for secure device */ secure_dev = device_create(me->class, NULL, MKDEV(MAJOR(me->dev_no), MINOR_NUM_SECURE_DEV), NULL, DEVICE_NAME_SECURE); VERIFY(err, !IS_ERR_OR_NULL(secure_dev)); if (err) goto device_create_bail; for (i = 0; i < NUM_CHANNELS; i++) { me->jobid[i] = 1; me->channel[i].dev = secure_dev; if (i == CDSP_DOMAIN_ID) me->channel[i].dev = dev; me->channel[i].ssrcount = 0; me->channel[i].prevssrcount = 0; me->channel[i].subsystemstate = SUBSYSTEM_UP; me->channel[i].ramdumpenabled = 0; me->channel[i].rh_dump_dev = NULL; me->channel[i].nb.notifier_call = fastrpc_restart_notifier_cb; me->channel[i].handle = subsys_notif_register_notifier( gcinfo[i].subsys, &me->channel[i].nb); if (IS_ERR_OR_NULL(me->channel[i].handle)) pr_warn("adsprpc: %s: SSR notifier register failed for %s with err %d\n", __func__, gcinfo[i].subsys, PTR_ERR(me->channel[i].handle)); else pr_info("adsprpc: %s: SSR notifier registered for %s\n", __func__, gcinfo[i].subsys); } err = register_rpmsg_driver(&fastrpc_rpmsg_client); if (err) { pr_err("adsprpc: %s: register_rpmsg_driver failed with err %d\n", __func__, err); goto device_create_bail; } me->rpmsg_register = 1; fastrpc_register_wakeup_source(me->non_secure_dev, FASTRPC_NON_SECURE_WAKE_SOURCE_CLIENT_NAME, &me->wake_source); fastrpc_register_wakeup_source(me->secure_dev, FASTRPC_SECURE_WAKE_SOURCE_CLIENT_NAME, &me->wake_source_secure); return 0; device_create_bail: for (i = 0; i < NUM_CHANNELS; i++) { if (me->channel[i].handle) subsys_notif_unregister_notifier(me->channel[i].handle, &me->channel[i].nb); } if (!IS_ERR_OR_NULL(dev)) device_destroy(me->class, MKDEV(MAJOR(me->dev_no), MINOR_NUM_DEV)); if (!IS_ERR_OR_NULL(secure_dev)) device_destroy(me->class, MKDEV(MAJOR(me->dev_no), MINOR_NUM_SECURE_DEV)); class_destroy(me->class); class_create_bail: cdev_del(&me->cdev); cdev_init_bail: unregister_chrdev_region(me->dev_no, NUM_CHANNELS); alloc_chrdev_bail: register_bail: fastrpc_deinit(); return err; } static void __exit fastrpc_device_exit(void) { struct fastrpc_apps *me = &gfa; int i; fastrpc_file_list_dtor(me); fastrpc_deinit(); for (i = 0; i < NUM_CHANNELS; i++) { if (!gcinfo[i].name) continue; if (me->channel[i].ipc_log_ctx) ipc_log_context_destroy(me->channel[i].ipc_log_ctx); subsys_notif_unregister_notifier(me->channel[i].handle, &me->channel[i].nb); } /* Destroy the secure and non secure devices */ device_destroy(me->class, MKDEV(MAJOR(me->dev_no), MINOR_NUM_DEV)); device_destroy(me->class, MKDEV(MAJOR(me->dev_no), MINOR_NUM_SECURE_DEV)); class_destroy(me->class); cdev_del(&me->cdev); unregister_chrdev_region(me->dev_no, NUM_CHANNELS); if (me->rpmsg_register == 1) unregister_rpmsg_driver(&fastrpc_rpmsg_client); if (me->wake_source) wakeup_source_unregister(me->wake_source); if (me->wake_source_secure) wakeup_source_unregister(me->wake_source_secure); debugfs_remove_recursive(debugfs_root); } late_initcall(fastrpc_device_init); module_exit(fastrpc_device_exit); MODULE_LICENSE("GPL v2");