[ Upstream commit 4d8df8cbb9156b0a0ab3f802b80cb5db57acc0bf ]
Currently, it is possible to enable indirect branch speculation even after
it was force-disabled using the PR_SPEC_FORCE_DISABLE option. Moreover, the
PR_GET_SPECULATION_CTRL command gives afterwards an incorrect result
(force-disabled when it is in fact enabled). This also is inconsistent
vs. STIBP and the documention which cleary states that
PR_SPEC_FORCE_DISABLE cannot be undone.
Fix this by actually enforcing force-disabled indirect branch
speculation. PR_SPEC_ENABLE called after PR_SPEC_FORCE_DISABLE now fails
with -EPERM as described in the documentation.
Fixes: 9137bb27e60e ("x86/speculation: Add prctl() control for indirect branch speculation")
Signed-off-by: Anthony Steinhauser <asteinhauser@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 21998a351512eba4ed5969006f0c55882d995ada ]
When STIBP is unavailable or enhanced IBRS is available, Linux
force-disables the IBPB mitigation of Spectre-BTB even when simultaneous
multithreading is disabled. While attempts to enable IBPB using
prctl(PR_SET_SPECULATION_CTRL, PR_SPEC_INDIRECT_BRANCH, ...) fail with
EPERM, the seccomp syscall (or its prctl(PR_SET_SECCOMP, ...) equivalent)
which are used e.g. by Chromium or OpenSSH succeed with no errors but the
application remains silently vulnerable to cross-process Spectre v2 attacks
(classical BTB poisoning). At the same time the SYSFS reporting
(/sys/devices/system/cpu/vulnerabilities/spectre_v2) displays that IBPB is
conditionally enabled when in fact it is unconditionally disabled.
STIBP is useful only when SMT is enabled. When SMT is disabled and STIBP is
unavailable, it makes no sense to force-disable also IBPB, because IBPB
protects against cross-process Spectre-BTB attacks regardless of the SMT
state. At the same time since missing STIBP was only observed on AMD CPUs,
AMD does not recommend using STIBP, but recommends using IBPB, so disabling
IBPB because of missing STIBP goes directly against AMD's advice:
https://developer.amd.com/wp-content/resources/Architecture_Guidelines_Update_Indirect_Branch_Control.pdf
Similarly, enhanced IBRS is designed to protect cross-core BTB poisoning
and BTB-poisoning attacks from user space against kernel (and
BTB-poisoning attacks from guest against hypervisor), it is not designed
to prevent cross-process (or cross-VM) BTB poisoning between processes (or
VMs) running on the same core. Therefore, even with enhanced IBRS it is
necessary to flush the BTB during context-switches, so there is no reason
to force disable IBPB when enhanced IBRS is available.
Enable the prctl control of IBPB even when STIBP is unavailable or enhanced
IBRS is available.
Fixes: 7cc765a67d8e ("x86/speculation: Enable prctl mode for spectre_v2_user")
Signed-off-by: Anthony Steinhauser <asteinhauser@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 20c3a2c33e9fdc82e9e8e8d2a6445b3256d20191 ]
Different AMD processors may have different implementations of STIBP.
When STIBP is conditionally enabled, some implementations would benefit
from having STIBP always on instead of toggling the STIBP bit through MSR
writes. This preference is advertised through a CPUID feature bit.
When conditional STIBP support is requested at boot and the CPU advertises
STIBP always-on mode as preferred, switch to STIBP "on" support. To show
that this transition has occurred, create a new spectre_v2_user_mitigation
value and a new spectre_v2_user_strings message. The new mitigation value
is used in spectre_v2_user_select_mitigation() to print the new mitigation
message as well as to return a new string from stibp_state().
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Link: https://lkml.kernel.org/r/20181213230352.6937.74943.stgit@tlendack-t1.amdoffice.net
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 7e5b3c267d256822407a22fdce6afdf9cd13f9fb upstream
SRBDS is an MDS-like speculative side channel that can leak bits from the
random number generator (RNG) across cores and threads. New microcode
serializes the processor access during the execution of RDRAND and
RDSEED. This ensures that the shared buffer is overwritten before it is
released for reuse.
While it is present on all affected CPU models, the microcode mitigation
is not needed on models that enumerate ARCH_CAPABILITIES[MDS_NO] in the
cases where TSX is not supported or has been disabled with TSX_CTRL.
The mitigation is activated by default on affected processors and it
increases latency for RDRAND and RDSEED instructions. Among other
effects this will reduce throughput from /dev/urandom.
* Enable administrator to configure the mitigation off when desired using
either mitigations=off or srbds=off.
* Export vulnerability status via sysfs
* Rename file-scoped macros to apply for non-whitelist table initializations.
[ bp: Massage,
- s/VULNBL_INTEL_STEPPING/VULNBL_INTEL_STEPPINGS/g,
- do not read arch cap MSR a second time in tsx_fused_off() - just pass it in,
- flip check in cpu_set_bug_bits() to save an indentation level,
- reflow comments.
jpoimboe: s/Mitigated/Mitigation/ in user-visible strings
tglx: Dropped the fused off magic for now
]
Signed-off-by: Mark Gross <mgross@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Tested-by: Neelima Krishnan <neelima.krishnan@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 64870ed1b12e235cfca3f6c6da75b542c973ff78 upstream.
For MDS vulnerable processors with TSX support, enabling either MDS or
TAA mitigations will enable the use of VERW to flush internal processor
buffers at the right code path. IOW, they are either both mitigated
or both not. However, if the command line options are inconsistent,
the vulnerabilites sysfs files may not report the mitigation status
correctly.
For example, with only the "mds=off" option:
vulnerabilities/mds:Vulnerable; SMT vulnerable
vulnerabilities/tsx_async_abort:Mitigation: Clear CPU buffers; SMT vulnerable
The mds vulnerabilities file has wrong status in this case. Similarly,
the taa vulnerability file will be wrong with mds mitigation on, but
taa off.
Change taa_select_mitigation() to sync up the two mitigation status
and have them turned off if both "mds=off" and "tsx_async_abort=off"
are present.
Update documentation to emphasize the fact that both "mds=off" and
"tsx_async_abort=off" have to be specified together for processors that
are affected by both TAA and MDS to be effective.
[ bp: Massage and add kernel-parameters.txt change too. ]
Fixes: 1b42f017415b ("x86/speculation/taa: Add mitigation for TSX Async Abort")
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: linux-doc@vger.kernel.org
Cc: Mark Gross <mgross@linux.intel.com>
Cc: <stable@vger.kernel.org>
Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Tyler Hicks <tyhicks@canonical.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20191115161445.30809-2-longman@redhat.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b8e8c8303ff28c61046a4d0f6ea99aea609a7dc0 upstream.
With some Intel processors, putting the same virtual address in the TLB
as both a 4 KiB and 2 MiB page can confuse the instruction fetch unit
and cause the processor to issue a machine check resulting in a CPU lockup.
Unfortunately when EPT page tables use huge pages, it is possible for a
malicious guest to cause this situation.
Add a knob to mark huge pages as non-executable. When the nx_huge_pages
parameter is enabled (and we are using EPT), all huge pages are marked as
NX. If the guest attempts to execute in one of those pages, the page is
broken down into 4K pages, which are then marked executable.
This is not an issue for shadow paging (except nested EPT), because then
the host is in control of TLB flushes and the problematic situation cannot
happen. With nested EPT, again the nested guest can cause problems shadow
and direct EPT is treated in the same way.
[ tglx: Fixup default to auto and massage wording a bit ]
Originally-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit db4d30fbb71b47e4ecb11c4efa5d8aad4b03dfae upstream.
Some processors may incur a machine check error possibly resulting in an
unrecoverable CPU lockup when an instruction fetch encounters a TLB
multi-hit in the instruction TLB. This can occur when the page size is
changed along with either the physical address or cache type. The relevant
erratum can be found here:
https://bugzilla.kernel.org/show_bug.cgi?id=205195
There are other processors affected for which the erratum does not fully
disclose the impact.
This issue affects both bare-metal x86 page tables and EPT.
It can be mitigated by either eliminating the use of large pages or by
using careful TLB invalidations when changing the page size in the page
tables.
Just like Spectre, Meltdown, L1TF and MDS, a new bit has been allocated in
MSR_IA32_ARCH_CAPABILITIES (PSCHANGE_MC_NO) and will be set on CPUs which
are mitigated against this issue.
Signed-off-by: Vineela Tummalapalli <vineela.tummalapalli@intel.com>
Co-developed-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 012206a822a8b6ac09125bfaa210a95b9eb8f1c1 upstream.
For new IBRS_ALL CPUs, the Enhanced IBRS check at the beginning of
cpu_bugs_smt_update() causes the function to return early, unintentionally
skipping the MDS and TAA logic.
This is not a problem for MDS, because there appears to be no overlap
between IBRS_ALL and MDS-affected CPUs. So the MDS mitigation would be
disabled and nothing would need to be done in this function anyway.
But for TAA, the TAA_MSG_SMT string will never get printed on Cascade
Lake and newer.
The check is superfluous anyway: when 'spectre_v2_enabled' is
SPECTRE_V2_IBRS_ENHANCED, 'spectre_v2_user' is always
SPECTRE_V2_USER_NONE, and so the 'spectre_v2_user' switch statement
handles it appropriately by doing nothing. So just remove the check.
Fixes: 1b42f017415b ("x86/speculation/taa: Add mitigation for TSX Async Abort")
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Tyler Hicks <tyhicks@canonical.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 1b42f017415b46c317e71d41c34ec088417a1883 upstream.
TSX Async Abort (TAA) is a side channel vulnerability to the internal
buffers in some Intel processors similar to Microachitectural Data
Sampling (MDS). In this case, certain loads may speculatively pass
invalid data to dependent operations when an asynchronous abort
condition is pending in a TSX transaction.
This includes loads with no fault or assist condition. Such loads may
speculatively expose stale data from the uarch data structures as in
MDS. Scope of exposure is within the same-thread and cross-thread. This
issue affects all current processors that support TSX, but do not have
ARCH_CAP_TAA_NO (bit 8) set in MSR_IA32_ARCH_CAPABILITIES.
On CPUs which have their IA32_ARCH_CAPABILITIES MSR bit MDS_NO=0,
CPUID.MD_CLEAR=1 and the MDS mitigation is clearing the CPU buffers
using VERW or L1D_FLUSH, there is no additional mitigation needed for
TAA. On affected CPUs with MDS_NO=1 this issue can be mitigated by
disabling the Transactional Synchronization Extensions (TSX) feature.
A new MSR IA32_TSX_CTRL in future and current processors after a
microcode update can be used to control the TSX feature. There are two
bits in that MSR:
* TSX_CTRL_RTM_DISABLE disables the TSX sub-feature Restricted
Transactional Memory (RTM).
* TSX_CTRL_CPUID_CLEAR clears the RTM enumeration in CPUID. The other
TSX sub-feature, Hardware Lock Elision (HLE), is unconditionally
disabled with updated microcode but still enumerated as present by
CPUID(EAX=7).EBX{bit4}.
The second mitigation approach is similar to MDS which is clearing the
affected CPU buffers on return to user space and when entering a guest.
Relevant microcode update is required for the mitigation to work. More
details on this approach can be found here:
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html
The TSX feature can be controlled by the "tsx" command line parameter.
If it is force-enabled then "Clear CPU buffers" (MDS mitigation) is
deployed. The effective mitigation state can be read from sysfs.
[ bp:
- massage + comments cleanup
- s/TAA_MITIGATION_TSX_DISABLE/TAA_MITIGATION_TSX_DISABLED/g - Josh.
- remove partial TAA mitigation in update_mds_branch_idle() - Josh.
- s/tsx_async_abort_cmdline/tsx_async_abort_parse_cmdline/g
]
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f36cf386e3fec258a341d446915862eded3e13d8 upstream
Intel provided the following information:
On all current Atom processors, instructions that use a segment register
value (e.g. a load or store) will not speculatively execute before the
last writer of that segment retires. Thus they will not use a
speculatively written segment value.
That means on ATOMs there is no speculation through SWAPGS, so the SWAPGS
entry paths can be excluded from the extra LFENCE if PTI is disabled.
Create a separate bug flag for the through SWAPGS speculation and mark all
out-of-order ATOMs and AMD/HYGON CPUs as not affected. The in-order ATOMs
are excluded from the whole mitigation mess anyway.
Reported-by: Andrew Cooper <andrew.cooper3@citrix.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Tyler Hicks <tyhicks@canonical.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a2059825986a1c8143fd6698774fa9d83733bb11 upstream
The previous commit added macro calls in the entry code which mitigate the
Spectre v1 swapgs issue if the X86_FEATURE_FENCE_SWAPGS_* features are
enabled. Enable those features where applicable.
The mitigations may be disabled with "nospectre_v1" or "mitigations=off".
There are different features which can affect the risk of attack:
- When FSGSBASE is enabled, unprivileged users are able to place any
value in GS, using the wrgsbase instruction. This means they can
write a GS value which points to any value in kernel space, which can
be useful with the following gadget in an interrupt/exception/NMI
handler:
if (coming from user space)
swapgs
mov %gs:<percpu_offset>, %reg1
// dependent load or store based on the value of %reg
// for example: mov %(reg1), %reg2
If an interrupt is coming from user space, and the entry code
speculatively skips the swapgs (due to user branch mistraining), it
may speculatively execute the GS-based load and a subsequent dependent
load or store, exposing the kernel data to an L1 side channel leak.
Note that, on Intel, a similar attack exists in the above gadget when
coming from kernel space, if the swapgs gets speculatively executed to
switch back to the user GS. On AMD, this variant isn't possible
because swapgs is serializing with respect to future GS-based
accesses.
NOTE: The FSGSBASE patch set hasn't been merged yet, so the above case
doesn't exist quite yet.
- When FSGSBASE is disabled, the issue is mitigated somewhat because
unprivileged users must use prctl(ARCH_SET_GS) to set GS, which
restricts GS values to user space addresses only. That means the
gadget would need an additional step, since the target kernel address
needs to be read from user space first. Something like:
if (coming from user space)
swapgs
mov %gs:<percpu_offset>, %reg1
mov (%reg1), %reg2
// dependent load or store based on the value of %reg2
// for example: mov %(reg2), %reg3
It's difficult to audit for this gadget in all the handlers, so while
there are no known instances of it, it's entirely possible that it
exists somewhere (or could be introduced in the future). Without
tooling to analyze all such code paths, consider it vulnerable.
Effects of SMAP on the !FSGSBASE case:
- If SMAP is enabled, and the CPU reports RDCL_NO (i.e., not
susceptible to Meltdown), the kernel is prevented from speculatively
reading user space memory, even L1 cached values. This effectively
disables the !FSGSBASE attack vector.
- If SMAP is enabled, but the CPU *is* susceptible to Meltdown, SMAP
still prevents the kernel from speculatively reading user space
memory. But it does *not* prevent the kernel from reading the
user value from L1, if it has already been cached. This is probably
only a small hurdle for an attacker to overcome.
Thanks to Dave Hansen for contributing the speculative_smap() function.
Thanks to Andrew Cooper for providing the inside scoop on whether swapgs
is serializing on AMD.
[ tglx: Fixed the USER fence decision and polished the comment as suggested
by Dave Hansen ]
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 517c3ba00916383af6411aec99442c307c23f684 upstream.
X86_HYPER_NATIVE isn't accurate for checking if running on native platform,
e.g. CONFIG_HYPERVISOR_GUEST isn't set or "nopv" is enabled.
Checking the CPU feature bit X86_FEATURE_HYPERVISOR to determine if it's
running on native platform is more accurate.
This still doesn't cover the platforms on which X86_FEATURE_HYPERVISOR is
unsupported, e.g. VMware, but there is nothing which can be done about this
scenario.
Fixes: 8a4b06d391b0 ("x86/speculation/mds: Add sysfs reporting for MDS")
Signed-off-by: Zhenzhong Duan <zhenzhong.duan@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/1564022349-17338-1-git-send-email-zhenzhong.duan@oracle.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit c1f7fec1eb6a2c86d01bc22afce772c743451d88 upstream.
The bits set in x86_spec_ctrl_mask are used to calculate the guest's value
of SPEC_CTRL that is written to the MSR before VMENTRY, and control which
mitigations the guest can enable. In the case of SSBD, unless the host has
enabled SSBD always on mode (by passing "spec_store_bypass_disable=on" in
the kernel parameters), the SSBD bit is not set in the mask and the guest
can not properly enable the SSBD always on mitigation mode.
This has been confirmed by running the SSBD PoC on a guest using the SSBD
always on mitigation mode (booted with kernel parameter
"spec_store_bypass_disable=on"), and verifying that the guest is vulnerable
unless the host is also using SSBD always on mode. In addition, the guest
OS incorrectly reports the SSB vulnerability as mitigated.
Always set the SSBD bit in x86_spec_ctrl_mask when the host CPU supports
it, allowing the guest to use SSBD whether or not the host has chosen to
enable the mitigation in any of its modes.
Fixes: be6fcb5478 ("x86/bugs: Rework spec_ctrl base and mask logic")
Signed-off-by: Alejandro Jimenez <alejandro.j.jimenez@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Liam Merwick <liam.merwick@oracle.com>
Reviewed-by: Mark Kanda <mark.kanda@oracle.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: bp@alien8.de
Cc: rkrcmar@redhat.com
Cc: kvm@vger.kernel.org
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/1560187210-11054-1-git-send-email-alejandro.j.jimenez@oracle.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e2c3c94788b08891dcf3dbe608f9880523ecd71b upstream
This code is only for CPUs which are affected by MSBDS, but are *not*
affected by the other two MDS issues.
For such CPUs, enabling the mds_idle_clear mitigation is enough to
mitigate SMT.
However if user boots with 'mds=off' and still has SMT enabled, we should
not report that SMT is mitigated:
$cat /sys//devices/system/cpu/vulnerabilities/mds
Vulnerable; SMT mitigated
But rather:
Vulnerable; SMT vulnerable
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Tyler Hicks <tyhicks@canonical.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lkml.kernel.org/r/20190412215118.294906495@localhost.localdomain
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 39226ef02bfb43248b7db12a4fdccb39d95318e3 upstream
MDS is vulnerable with SMT. Make that clear with a one-time printk
whenever SMT first gets enabled.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Tyler Hicks <tyhicks@canonical.com>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 7c3658b20194a5b3209a143f63bc9c643c6a3ae2 upstream
arch_smt_update() now has a dependency on both Spectre v2 and MDS
mitigations. Move its initial call to after all the mitigation decisions
have been made.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Tyler Hicks <tyhicks@canonical.com>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d71eb0ce109a124b0fa714832823b9452f2762cf upstream
Add the mds=full,nosmt cmdline option. This is like mds=full, but with
SMT disabled if the CPU is vulnerable.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Tyler Hicks <tyhicks@canonical.com>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 65fd4cb65b2dad97feb8330b6690445910b56d6a upstream
Move L!TF to a separate directory so the MDS stuff can be added at the
side. Otherwise the all hardware vulnerabilites have their own top level
entry. Should have done that right away.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Jon Masters <jcm@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 22dd8365088b6403630b82423cf906491859b65e upstream
In virtualized environments it can happen that the host has the microcode
update which utilizes the VERW instruction to clear CPU buffers, but the
hypervisor is not yet updated to expose the X86_FEATURE_MD_CLEAR CPUID bit
to guests.
Introduce an internal mitigation mode VMWERV which enables the invocation
of the CPU buffer clearing even if X86_FEATURE_MD_CLEAR is not set. If the
system has no updated microcode this results in a pointless execution of
the VERW instruction wasting a few CPU cycles. If the microcode is updated,
but not exposed to a guest then the CPU buffers will be cleared.
That said: Virtual Machines Will Eventually Receive Vaccine
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Jon Masters <jcm@redhat.com>
Tested-by: Jon Masters <jcm@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 8a4b06d391b0a42a373808979b5028f5c84d9c6a upstream
Add the sysfs reporting file for MDS. It exposes the vulnerability and
mitigation state similar to the existing files for the other speculative
hardware vulnerabilities.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Jon Masters <jcm@redhat.com>
Tested-by: Jon Masters <jcm@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit bc1241700acd82ec69fde98c5763ce51086269f8 upstream
Now that the mitigations are in place, add a command line parameter to
control the mitigation, a mitigation selector function and a SMT update
mechanism.
This is the minimal straight forward initial implementation which just
provides an always on/off mode. The command line parameter is:
mds=[full|off]
This is consistent with the existing mitigations for other speculative
hardware vulnerabilities.
The idle invocation is dynamically updated according to the SMT state of
the system similar to the dynamic update of the STIBP mitigation. The idle
mitigation is limited to CPUs which are only affected by MSBDS and not any
other variant, because the other variants cannot be mitigated on SMT
enabled systems.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Jon Masters <jcm@redhat.com>
Tested-by: Jon Masters <jcm@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 07f07f55a29cb705e221eda7894dd67ab81ef343 upstream
Add a static key which controls the invocation of the CPU buffer clear
mechanism on idle entry. This is independent of other MDS mitigations
because the idle entry invocation to mitigate the potential leakage due to
store buffer repartitioning is only necessary on SMT systems.
Add the actual invocations to the different halt/mwait variants which
covers all usage sites. mwaitx is not patched as it's not available on
Intel CPUs.
The buffer clear is only invoked before entering the C-State to prevent
that stale data from the idling CPU is spilled to the Hyper-Thread sibling
after the Store buffer got repartitioned and all entries are available to
the non idle sibling.
When coming out of idle the store buffer is partitioned again so each
sibling has half of it available. Now CPU which returned from idle could be
speculatively exposed to contents of the sibling, but the buffers are
flushed either on exit to user space or on VMENTER.
When later on conditional buffer clearing is implemented on top of this,
then there is no action required either because before returning to user
space the context switch will set the condition flag which causes a flush
on the return to user path.
Note, that the buffer clearing on idle is only sensible on CPUs which are
solely affected by MSBDS and not any other variant of MDS because the other
MDS variants cannot be mitigated when SMT is enabled, so the buffer
clearing on idle would be a window dressing exercise.
This intentionally does not handle the case in the acpi/processor_idle
driver which uses the legacy IO port interface for C-State transitions for
two reasons:
- The acpi/processor_idle driver was replaced by the intel_idle driver
almost a decade ago. Anything Nehalem upwards supports it and defaults
to that new driver.
- The legacy IO port interface is likely to be used on older and therefore
unaffected CPUs or on systems which do not receive microcode updates
anymore, so there is no point in adding that.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Jon Masters <jcm@redhat.com>
Tested-by: Jon Masters <jcm@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 650b68a0622f933444a6d66936abb3103029413b upstream
CPUs which are affected by L1TF and MDS mitigate MDS with the L1D Flush on
VMENTER when updated microcode is installed.
If a CPU is not affected by L1TF or if the L1D Flush is not in use, then
MDS mitigation needs to be invoked explicitly.
For these cases, follow the host mitigation state and invoke the MDS
mitigation before VMENTER.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Jon Masters <jcm@redhat.com>
Tested-by: Jon Masters <jcm@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 04dcbdb8057827b043b3c71aa397c4c63e67d086 upstream
Add a static key which controls the invocation of the CPU buffer clear
mechanism on exit to user space and add the call into
prepare_exit_to_usermode() and do_nmi() right before actually returning.
Add documentation which kernel to user space transition this covers and
explain why some corner cases are not mitigated.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Jon Masters <jcm@redhat.com>
Tested-by: Jon Masters <jcm@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b284909abad48b07d3071a9fc9b5692b3e64914b upstream.
With the following commit:
73d5e2b472 ("cpu/hotplug: detect SMT disabled by BIOS")
... the hotplug code attempted to detect when SMT was disabled by BIOS,
in which case it reported SMT as permanently disabled. However, that
code broke a virt hotplug scenario, where the guest is booted with only
primary CPU threads, and a sibling is brought online later.
The problem is that there doesn't seem to be a way to reliably
distinguish between the HW "SMT disabled by BIOS" case and the virt
"sibling not yet brought online" case. So the above-mentioned commit
was a bit misguided, as it permanently disabled SMT for both cases,
preventing future virt sibling hotplugs.
Going back and reviewing the original problems which were attempted to
be solved by that commit, when SMT was disabled in BIOS:
1) /sys/devices/system/cpu/smt/control showed "on" instead of
"notsupported"; and
2) vmx_vm_init() was incorrectly showing the L1TF_MSG_SMT warning.
I'd propose that we instead consider #1 above to not actually be a
problem. Because, at least in the virt case, it's possible that SMT
wasn't disabled by BIOS and a sibling thread could be brought online
later. So it makes sense to just always default the smt control to "on"
to allow for that possibility (assuming cpuid indicates that the CPU
supports SMT).
The real problem is #2, which has a simple fix: change vmx_vm_init() to
query the actual current SMT state -- i.e., whether any siblings are
currently online -- instead of looking at the SMT "control" sysfs value.
So fix it by:
a) reverting the original "fix" and its followup fix:
73d5e2b472 ("cpu/hotplug: detect SMT disabled by BIOS")
bc2d8d262c ("cpu/hotplug: Fix SMT supported evaluation")
and
b) changing vmx_vm_init() to query the actual current SMT state --
instead of the sysfs control value -- to determine whether the L1TF
warning is needed. This also requires the 'sched_smt_present'
variable to exported, instead of 'cpu_smt_control'.
Fixes: 73d5e2b472 ("cpu/hotplug: detect SMT disabled by BIOS")
Reported-by: Igor Mammedov <imammedo@redhat.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Joe Mario <jmario@redhat.com>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: kvm@vger.kernel.org
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/e3a85d585da28cc333ecbc1e78ee9216e6da9396.1548794349.git.jpoimboe@redhat.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 5b5e4d623ec8a34689df98e42d038a3b594d2ff9 upstream.
Swap storage is restricted to max_swapfile_size (~16TB on x86_64) whenever
the system is deemed affected by L1TF vulnerability. Even though the limit
is quite high for most deployments it seems to be too restrictive for
deployments which are willing to live with the mitigation disabled.
We have a customer to deploy 8x 6,4TB PCIe/NVMe SSD swap devices which is
clearly out of the limit.
Drop the swap restriction when l1tf=off is specified. It also doesn't make
much sense to warn about too much memory for the l1tf mitigation when it is
forcefully disabled by the administrator.
[ tglx: Folded the documentation delta change ]
Fixes: 377eeaa8e1 ("x86/speculation/l1tf: Limit swap file size to MAX_PA/2")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: <linux-mm@kvack.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20181113184910.26697-1-mhocko@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 6b3e64c237c072797a9ec918654a60e3a46488e2 upstream
If 'prctl' mode of user space protection from spectre v2 is selected
on the kernel command-line, STIBP and IBPB are applied on tasks which
restrict their indirect branch speculation via prctl.
SECCOMP enables the SSBD mitigation for sandboxed tasks already, so it
makes sense to prevent spectre v2 user space to user space attacks as
well.
The Intel mitigation guide documents how STIPB works:
Setting bit 1 (STIBP) of the IA32_SPEC_CTRL MSR on a logical processor
prevents the predicted targets of indirect branches on any logical
processor of that core from being controlled by software that executes
(or executed previously) on another logical processor of the same core.
Ergo setting STIBP protects the task itself from being attacked from a task
running on a different hyper-thread and protects the tasks running on
different hyper-threads from being attacked.
While the document suggests that the branch predictors are shielded between
the logical processors, the observed performance regressions suggest that
STIBP simply disables the branch predictor more or less completely. Of
course the document wording is vague, but the fact that there is also no
requirement for issuing IBPB when STIBP is used points clearly in that
direction. The kernel still issues IBPB even when STIBP is used until Intel
clarifies the whole mechanism.
IBPB is issued when the task switches out, so malicious sandbox code cannot
mistrain the branch predictor for the next user space task on the same
logical processor.
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Casey Schaufler <casey.schaufler@intel.com>
Cc: Asit Mallick <asit.k.mallick@intel.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Jon Masters <jcm@redhat.com>
Cc: Waiman Long <longman9394@gmail.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Dave Stewart <david.c.stewart@intel.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20181125185006.051663132@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 6d991ba509ebcfcc908e009d1db51972a4f7a064 upstream
The seccomp speculation control operates on all tasks of a process, but
only the current task of a process can update the MSR immediately. For the
other threads the update is deferred to the next context switch.
This creates the following situation with Process A and B:
Process A task 2 and Process B task 1 are pinned on CPU1. Process A task 2
does not have the speculation control TIF bit set. Process B task 1 has the
speculation control TIF bit set.
CPU0 CPU1
MSR bit is set
ProcB.T1 schedules out
ProcA.T2 schedules in
MSR bit is cleared
ProcA.T1
seccomp_update()
set TIF bit on ProcA.T2
ProcB.T1 schedules in
MSR is not updated <-- FAIL
This happens because the context switch code tries to avoid the MSR update
if the speculation control TIF bits of the incoming and the outgoing task
are the same. In the worst case ProcB.T1 and ProcA.T2 are the only tasks
scheduling back and forth on CPU1, which keeps the MSR stale forever.
In theory this could be remedied by IPIs, but chasing the remote task which
could be migrated is complex and full of races.
The straight forward solution is to avoid the asychronous update of the TIF
bit and defer it to the next context switch. The speculation control state
is stored in task_struct::atomic_flags by the prctl and seccomp updates
already.
Add a new TIF_SPEC_FORCE_UPDATE bit and set this after updating the
atomic_flags. Check the bit on context switch and force a synchronous
update of the speculation control if set. Use the same mechanism for
updating the current task.
Reported-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Casey Schaufler <casey.schaufler@intel.com>
Cc: Asit Mallick <asit.k.mallick@intel.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Jon Masters <jcm@redhat.com>
Cc: Waiman Long <longman9394@gmail.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Dave Stewart <david.c.stewart@intel.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1811272247140.1875@nanos.tec.linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 4c71a2b6fd7e42814aa68a6dec88abf3b42ea573 upstream
The IBPB speculation barrier is issued from switch_mm() when the kernel
switches to a user space task with a different mm than the user space task
which ran last on the same CPU.
An additional optimization is to avoid IBPB when the incoming task can be
ptraced by the outgoing task. This optimization only works when switching
directly between two user space tasks. When switching from a kernel task to
a user space task the optimization fails because the previous task cannot
be accessed anymore. So for quite some scenarios the optimization is just
adding overhead.
The upcoming conditional IBPB support will issue IBPB only for user space
tasks which have the TIF_SPEC_IB bit set. This requires to handle the
following cases:
1) Switch from a user space task (potential attacker) which has
TIF_SPEC_IB set to a user space task (potential victim) which has
TIF_SPEC_IB not set.
2) Switch from a user space task (potential attacker) which has
TIF_SPEC_IB not set to a user space task (potential victim) which has
TIF_SPEC_IB set.
This needs to be optimized for the case where the IBPB can be avoided when
only kernel threads ran in between user space tasks which belong to the
same process.
The current check whether two tasks belong to the same context is using the
tasks context id. While correct, it's simpler to use the mm pointer because
it allows to mangle the TIF_SPEC_IB bit into it. The context id based
mechanism requires extra storage, which creates worse code.
When a task is scheduled out its TIF_SPEC_IB bit is mangled as bit 0 into
the per CPU storage which is used to track the last user space mm which was
running on a CPU. This bit can be used together with the TIF_SPEC_IB bit of
the incoming task to make the decision whether IBPB needs to be issued or
not to cover the two cases above.
As conditional IBPB is going to be the default, remove the dubious ptrace
check for the IBPB always case and simply issue IBPB always when the
process changes.
Move the storage to a different place in the struct as the original one
created a hole.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Casey Schaufler <casey.schaufler@intel.com>
Cc: Asit Mallick <asit.k.mallick@intel.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Jon Masters <jcm@redhat.com>
Cc: Waiman Long <longman9394@gmail.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Dave Stewart <david.c.stewart@intel.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20181125185005.466447057@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>