find_bit functions are widely used in the kernel, including hot paths.
This module tests performance of those functions in 2 typical scenarios:
randomly filled bitmap with relatively equal distribution of set and
cleared bits, and sparse bitmap which has 1 set bit for 500 cleared
bits.
On ThunderX machine:
Start testing find_bit() with random-filled bitmap
find_next_bit: 240043 cycles, 164062 iterations
find_next_zero_bit: 312848 cycles, 163619 iterations
find_last_bit: 193748 cycles, 164062 iterations
find_first_bit: 177720874 cycles, 164062 iterations
Start testing find_bit() with sparse bitmap
find_next_bit: 3633 cycles, 656 iterations
find_next_zero_bit: 620399 cycles, 327025 iterations
find_last_bit: 3038 cycles, 656 iterations
find_first_bit: 691407 cycles, 656 iterations
[arnd@arndb.de: use correct format string for find-bit tests]
Link: http://lkml.kernel.org/r/20171113135605.3166307-1-arnd@arndb.de
Link: http://lkml.kernel.org/r/20171109140714.13168-1-ynorov@caviumnetworks.com
Signed-off-by: Yury Norov <ynorov@caviumnetworks.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Clement Courbet <courbet@google.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fengguang reported soft lockups while running the rbtree and interval
tree test modules. The logic for these tests all occur in init phase,
and we currently are pounding with the default values for number of
nodes and number of iterations of each test. Reduce the latter by two
orders of magnitude. This does not influence the value of the tests in
that one thousand times by default is enough to get the picture.
Link: http://lkml.kernel.org/r/20171109161715.xai2dtwqw2frhkcm@linux-n805
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The initial value (@m) compute is:
m = 1UL << (BITS_PER_LONG - 2);
while (m > x)
m >>= 2;
Which is a linear search for the highest even bit smaller or equal to @x
We can implement this using a binary search using __fls() (or better when
its hardware implemented).
m = 1UL << (__fls(x) & ~1UL);
Especially for small values of @x; which are the more common arguments
when doing a CDF on idle times; the linear search is near to worst case,
while the binary search of __fls() is a constant 6 (or 5 on 32bit)
branches.
cycles: branches: branch-misses:
PRE:
hot: 43.633557 +- 0.034373 45.333132 +- 0.002277 0.023529 +- 0.000681
cold: 207.438411 +- 0.125840 45.333132 +- 0.002277 6.976486 +- 0.004219
SOFTWARE FLS:
hot: 29.576176 +- 0.028850 26.666730 +- 0.004511 0.019463 +- 0.000663
cold: 165.947136 +- 0.188406 26.666746 +- 0.004511 6.133897 +- 0.004386
HARDWARE FLS:
hot: 24.720922 +- 0.025161 20.666784 +- 0.004509 0.020836 +- 0.000677
cold: 132.777197 +- 0.127471 20.666776 +- 0.004509 5.080285 +- 0.003874
Averages computed over all values <128k using a LFSR to generate order.
Cold numbers have a LFSR based branch trace buffer 'confuser' ran between
each int_sqrt() invocation.
Link: http://lkml.kernel.org/r/20171020164644.936577234@infradead.org
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Suggested-by: Joe Perches <joe@perches.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Anshul Garg <aksgarg1989@gmail.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: David Miller <davem@davemloft.net>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Michael Davidson <md@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The current int_sqrt() computation is sub-optimal for the case of small
@x. Which is the interesting case when we're going to do cumulative
distribution functions on idle times, which we assume to be a random
variable, where the target residency of the deepest idle state gives an
upper bound on the variable (5e6ns on recent Intel chips).
In the case of small @x, the compute loop:
while (m != 0) {
b = y + m;
y >>= 1;
if (x >= b) {
x -= b;
y += m;
}
m >>= 2;
}
can be reduced to:
while (m > x)
m >>= 2;
Because y==0, b==m and until x>=m y will remain 0.
And while this is computationally equivalent, it runs much faster
because there's less code, in particular less branches.
cycles: branches: branch-misses:
OLD:
hot: 45.109444 +- 0.044117 44.333392 +- 0.002254 0.018723 +- 0.000593
cold: 187.737379 +- 0.156678 44.333407 +- 0.002254 6.272844 +- 0.004305
PRE:
hot: 67.937492 +- 0.064124 66.999535 +- 0.000488 0.066720 +- 0.001113
cold: 232.004379 +- 0.332811 66.999527 +- 0.000488 6.914634 +- 0.006568
POST:
hot: 43.633557 +- 0.034373 45.333132 +- 0.002277 0.023529 +- 0.000681
cold: 207.438411 +- 0.125840 45.333132 +- 0.002277 6.976486 +- 0.004219
Averages computed over all values <128k using a LFSR to generate order.
Cold numbers have a LFSR based branch trace buffer 'confuser' ran between
each int_sqrt() invocation.
Link: http://lkml.kernel.org/r/20171020164644.876503355@infradead.org
Fixes: 30493cc9dd ("lib/int_sqrt.c: optimize square root algorithm")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Suggested-by: Anshul Garg <aksgarg1989@gmail.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Joe Perches <joe@perches.com>
Cc: David Miller <davem@davemloft.net>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Michael Davidson <md@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The GCC randomize layout plugin can randomize the member offsets of
sensitive kernel data structures. To use this feature, certain
annotations and members are added to the structures which affect the
member offsets even if this plugin is not used.
All of these structures are completely randomized, except for task_struct
which leaves out some of its members. All the other members are wrapped
within an anonymous struct with the __randomize_layout attribute. This is
done using the randomized_struct_fields_start and
randomized_struct_fields_end defines.
When the plugin is disabled, the behaviour of this attribute can vary
based on the GCC version. For GCC 5.1+, this attribute maps to
__designated_init otherwise it is just an empty define but the anonymous
structure is still present. For other compilers, both
randomized_struct_fields_start and randomized_struct_fields_end default
to empty defines meaning the anonymous structure is not introduced at
all.
So, if a module compiled with Clang, such as a BPF program, needs to
access task_struct fields such as pid and comm, the offsets of these
members as recognized by Clang are different from those recognized by
modules compiled with GCC. If GCC 4.6+ is used to build the kernel,
this can be solved by introducing appropriate defines for Clang so that
the anonymous structure is seen when determining the offsets for the
members.
Link: http://lkml.kernel.org/r/20171109064645.25581-1-sandipan@linux.vnet.ibm.com
Signed-off-by: Sandipan Das <sandipan@linux.vnet.ibm.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Cc: Alexei Starovoitov <ast@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Prior to v4.11, x86 used warn_slowpath_fmt() for handling WARN()s.
After WARN() was moved to using UD0 on x86, the warning text started
appearing _before_ the "cut here" line. This appears to have been a
long-standing bug on architectures that used __WARN_TAINT, but it didn't
get fixed.
v4.11 and earlier on x86:
------------[ cut here ]------------
WARNING: CPU: 0 PID: 2956 at drivers/misc/lkdtm_bugs.c:65 lkdtm_WARNING+0x21/0x30
This is a warning message
Modules linked in:
v4.12 and later on x86:
This is a warning message
------------[ cut here ]------------
WARNING: CPU: 1 PID: 2982 at drivers/misc/lkdtm_bugs.c:68 lkdtm_WARNING+0x15/0x20
Modules linked in:
With this fix:
------------[ cut here ]------------
This is a warning message
WARNING: CPU: 3 PID: 3009 at drivers/misc/lkdtm_bugs.c:67 lkdtm_WARNING+0x15/0x20
Since the __FILE__ reporting happens as part of the UD0 handler, it
isn't trivial to move the message to after the WARNING line, but at
least we can fix the position of the "cut here" line so all the various
logging tools will start including the actual runtime warning message
again, when they follow the instruction and "cut here".
Link: http://lkml.kernel.org/r/1510100869-73751-4-git-send-email-keescook@chromium.org
Fixes: 9a93848fe7 ("x86/debug: Implement __WARN() using UD0")
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When we pass the result of a multiplication as the timeout or the delay,
we can get a warning from gcc-7:
drivers/mmc/host/bcm2835.c:596:149: error: '*' in boolean context, suggest '&&' instead [-Werror=int-in-bool-context]
drivers/mfd/arizona-core.c:247:195: error: '*' in boolean context, suggest '&&' instead [-Werror=int-in-bool-context]
drivers/gpu/drm/sun4i/sun4i_hdmi_i2c.c:49:27: error: '*' in boolean context, suggest '&&' instead [-Werror=int-in-bool-context]
The warning is a bit questionable inside of a macro, but this is
intentional on the side of the gcc developers. It is also an indication
of another problem: we evaluate the timeout and sleep arguments multiple
times, which can have undesired side-effects when those are complex
expressions.
This changes the two iopoll variants to use local variables for storing
copies of the timeouts. This adds some more type safety, and avoids
both the double-evaluation and the gcc warning.
Link: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=81484
Link: http://lkml.kernel.org/r/20170726133756.2161367-1-arnd@arndb.de
Link: http://lkml.kernel.org/r/20171102114048.1526955-1-arnd@arndb.de
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I like _ONCE warnings because it's guaranteed that they don't flood the
log.
During testing I find it useful to reset the state of the once warnings,
so that I can rerun tests and see if they trigger again, or can
guarantee that a test run always hits the same warnings.
This patch adds a debugfs interface to reset all the _ONCE warnings so
that they appear again:
echo 1 > /sys/kernel/debug/clear_warn_once
This is implemented by putting all the warning booleans into a special
section, and clearing it.
[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/20171017221455.6740-1-andi@firstfloor.org
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Tested-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Right now there is no convenient way to check if a process is being
coredumped at the moment.
It might be necessary to recognize such state to prevent killing the
process and getting a broken coredump. Writing a large core might take
significant time, and the process is unresponsive during it, so it might
be killed by timeout, if another process is monitoring and
killing/restarting hanging tasks.
We're getting a significant number of corrupted coredump files on
machines in our fleet, just because processes are being killed by
timeout in the middle of the core writing process.
We do have a process health check, and some agent is responsible for
restarting processes which are not responding for health check requests.
Writing a large coredump to the disk can easily exceed the reasonable
timeout (especially on an overloaded machine).
This flag will allow the agent to distinguish processes which are being
coredumped, extend the timeout for them, and let them produce a full
coredump file.
To provide an ability to detect if a process is in the state of being
coredumped, we can expose a boolean CoreDumping flag in
/proc/pid/status.
Example:
$ cat core.sh
#!/bin/sh
echo "|/usr/bin/sleep 10" > /proc/sys/kernel/core_pattern
sleep 1000 &
PID=$!
cat /proc/$PID/status | grep CoreDumping
kill -ABRT $PID
sleep 1
cat /proc/$PID/status | grep CoreDumping
$ ./core.sh
CoreDumping: 0
CoreDumping: 1
[guro@fb.com: document CoreDumping flag in /proc/<pid>/status]
Link: http://lkml.kernel.org/r/20170928135357.GA8470@castle.DHCP.thefacebook.com
Link: http://lkml.kernel.org/r/20170920230634.31572-1-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit f3c931633a59 ("mm, compaction: persistently skip hugetlbfs
pageblocks") has introduced pageblock_skip_persistent() checks into
migration and free scanners, to make sure pageblocks that should be
persistently skipped are marked as such, regardless of the
ignore_skip_hint flag.
Since the previous patch introduced a new no_set_skip_hint flag, the
ignore flag no longer prevents marking pageblocks as skipped. Therefore
we can remove the special cases. The relevant pageblocks will be marked
as skipped by the common logic which marks each pageblock where no page
could be isolated. This makes the code simpler.
Link: http://lkml.kernel.org/r/20171102121706.21504-3-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pageblock skip hints were added as a heuristic for compaction, which
shares core code with CMA. Since CMA reliability would suffer from the
heuristics, compact_control flag ignore_skip_hint was added for the CMA
use case. Since 6815bf3f23 ("mm/compaction: respect ignore_skip_hint
in update_pageblock_skip") the flag also means that CMA won't *update*
the skip hints in addition to ignoring them.
Today, direct compaction can also ignore the skip hints in the last
resort attempt, but there's no reason not to set them when isolation
fails in such case. Thus, this patch splits off a new no_set_skip_hint
flag to avoid the updating, which only CMA sets. This should improve
the heuristics a bit, and allow us to simplify the persistent skip bit
handling as the next step.
Link: http://lkml.kernel.org/r/20171102121706.21504-2-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
pageblock_skip_persistent() checks for HugeTLB pages of pageblock order.
When clearing pageblock skip bits for compaction, the bits are not
cleared for such pageblocks, because they cannot contain base pages
suitable for migration, nor free pages to use as migration targets.
This optimization can be simply extended to all compound pages of order
equal or larger than pageblock order, because migrating such pages (if
they support it) cannot help sub-pageblock fragmentation. This includes
THP's and also gigantic HugeTLB pages, which the current implementation
doesn't persistently skip due to a strict pageblock_order equality check
and not recognizing tail pages.
While THP pages are generally less "persistent" than HugeTLB, we can
still expect that if a THP exists at the point of
__reset_isolation_suitable(), it will exist also during the subsequent
compaction run. The time difference here could be actually smaller than
between a compaction run that sets a (non-persistent) skip bit on a THP,
and the next compaction run that observes it.
Link: http://lkml.kernel.org/r/20171102121706.21504-1-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Kcompactd is needlessly ignoring pageblock skip information. It is
doing MIGRATE_SYNC_LIGHT compaction, which is no more powerful than
MIGRATE_SYNC compaction.
If compaction recently failed to isolate memory from a set of
pageblocks, there is nothing to indicate that kcompactd will be able to
do so, or that it is beneficial from attempting to isolate memory.
Use the pageblock skip hint to avoid rescanning pageblocks needlessly
until that information is reset.
Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1708151638550.106658@chino.kir.corp.google.com
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
dma-debug reports the following warning:
WARNING: CPU: 3 PID: 298 at kernel-4.4/lib/dma-debug.c:604
debug _dma_assert_idle+0x1a8/0x230()
DMA-API: cpu touching an active dma mapped cacheline [cln=0x00000882300]
CPU: 3 PID: 298 Comm: vold Tainted: G W O 4.4.22+ #1
Hardware name: MT6739 (DT)
Call trace:
debug_dma_assert_idle+0x1a8/0x230
wp_page_copy.isra.96+0x118/0x520
do_wp_page+0x4fc/0x534
handle_mm_fault+0xd4c/0x1310
do_page_fault+0x1c8/0x394
do_mem_abort+0x50/0xec
I found that debug_dma_alloc_coherent() and debug_dma_free_coherent()
assume that dma_alloc_coherent() always returns a linear address.
However it's possible that dma_alloc_coherent() returns a non-linear
address. In this case, page_to_pfn(virt_to_page(virt)) will return an
incorrect pfn. If the pfn is valid and mapped as a COW page, we will
hit the warning when doing wp_page_copy().
Fix this by calculating pfn for linear and non-linear addresses.
[miles.chen@mediatek.com: v4]
Link: http://lkml.kernel.org/r/1510872972-23919-1-git-send-email-miles.chen@mediatek.com
Link: http://lkml.kernel.org/r/1506484087-1177-1-git-send-email-miles.chen@mediatek.com
Signed-off-by: Miles Chen <miles.chen@mediatek.com>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is a race in the current z3fold implementation between
do_compact() called in a work queue context and the page release
procedure when page's kref goes to 0.
do_compact() may be waiting for page lock, which is released by
release_z3fold_page_locked right before putting the page onto the
"stale" list, and then the page may be freed as do_compact() modifies
its contents.
The mechanism currently implemented to handle that (checking the
PAGE_STALE flag) is not reliable enough. Instead, we'll use page's kref
counter to guarantee that the page is not released if its compaction is
scheduled. It then becomes compaction function's responsibility to
decrease the counter and quit immediately if the page was actually
freed.
Link: http://lkml.kernel.org/r/20171117092032.00ea56f42affbed19f4fcc6c@gmail.com
Signed-off-by: Vitaly Wool <vitaly.wool@sonymobile.com>
Cc: <Oleksiy.Avramchenko@sony.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The cleanup caused build warnings for constant mask pointers:
mm/mempolicy.c: In function `mpol_to_str':
./include/linux/nodemask.h:108:11: warning: the comparison will always evaluate as `true' for the address of `nodes' will never be NULL [-Waddress]
An earlier workaround I suggested was incorporated in the version that
got merged, but that only solved the problem for gcc-7 and higher, while
gcc-4.6 through gcc-6.x still warn.
This changes the printing again to use inline functions that make it
clear to the compiler that the line that does the NULL check has no idea
whether the argument is a constant NULL.
Link: http://lkml.kernel.org/r/20171117101545.119689-1-arnd@arndb.de
Fixes: 0205f75571 ("mm: simplify nodemask printing")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Zhangshaokun <zhangshaokun@hisilicon.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull tracing updates from
- allow module init functions to be traced
- clean up some unused or not used by config events (saves space)
- clean up of trace histogram code
- add support for preempt and interrupt enabled/disable events
- other various clean ups
* tag 'trace-v4.15' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (30 commits)
tracing, thermal: Hide cpu cooling trace events when not in use
tracing, thermal: Hide devfreq trace events when not in use
ftrace: Kill FTRACE_OPS_FL_PER_CPU
perf/ftrace: Small cleanup
perf/ftrace: Fix function trace events
perf/ftrace: Revert ("perf/ftrace: Fix double traces of perf on ftrace:function")
tracing, dma-buf: Remove unused trace event dma_fence_annotate_wait_on
tracing, memcg, vmscan: Hide trace events when not in use
tracing/xen: Hide events that are not used when X86_PAE is not defined
tracing: mark trace_test_buffer as __maybe_unused
printk: Remove superfluous memory barriers from printk_safe
ftrace: Clear hashes of stale ips of init memory
tracing: Add support for preempt and irq enable/disable events
tracing: Prepare to add preempt and irq trace events
ftrace/kallsyms: Have /proc/kallsyms show saved mod init functions
ftrace: Add freeing algorithm to free ftrace_mod_maps
ftrace: Save module init functions kallsyms symbols for tracing
ftrace: Allow module init functions to be traced
ftrace: Add a ftrace_free_mem() function for modules to use
tracing: Reimplement log2
...
Pull kselftest updates from Shuah Khan:
"This update to Kselftest consists of cleanup patches, fixes, and a new
test for ion buffer sharing.
Fixes include changes to skip firmware tests on systems that aren't
configured to support them, as opposed to failing them"
* tag 'linux-kselftest-4.15-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/shuah/linux-kselftest:
selftests: firmware: skip unsupported custom firmware fallback tests
selftests: firmware: skip unsupported async loading tests
selftests: memfd_test.c: fix compilation warning.
selftests/ftrace: Introduce exit_pass and exit_fail
selftests: ftrace: add more config fragments
android/ion: userspace test utility for ion buffer sharing
selftests: remove obsolete kconfig fragment for cpu-hotplug
selftests: vdso_test: support ARM64 targets
selftests/ftrace: Do not use arch dependent do_IRQ as a target function
selftests: breakpoints: fix compile error on breakpoint_test_arm64
selftests: add missing test result status in memory-hotplug test
selftests/exec: include cwd in long path calculation
selftests: seccomp: update .gitignore with newly added tests
selftests: vm: Update .gitignore with newly added tests
selftests: timers: Update .gitignore with newly added tests
Pull ACPI fix from Rafael Wysocki:
"This fixes a possible memory leak in an error code path in one of the
utility routines (Xiongfeng Wang)"
* tag 'acpi-fix-4.15-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm:
ACPI / utils: Fix memory leak in acpi_evaluate_reference() error path
Pull two power management fixes from Rafael Wysocki:
"This is the change making /proc/cpuinfo on x86 report current CPU
frequency in "cpu MHz" again in all cases and an additional one
dealing with an overzealous check in one of the helper routines in the
runtime PM framework"
* tag 'pm-fixes-4.15-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm:
PM / runtime: Drop children check from __pm_runtime_set_status()
x86 / CPU: Always show current CPU frequency in /proc/cpuinfo