Merge 4.19.172 into android-4.19-stable

Changes in 4.19.172
	gpio: mvebu: fix pwm .get_state period calculation
	Revert "mm/slub: fix a memory leak in sysfs_slab_add()"
	futex: Move futex exit handling into futex code
	futex: Replace PF_EXITPIDONE with a state
	exit/exec: Seperate mm_release()
	futex: Split futex_mm_release() for exit/exec
	futex: Set task::futex_state to DEAD right after handling futex exit
	futex: Mark the begin of futex exit explicitly
	futex: Sanitize exit state handling
	futex: Provide state handling for exec() as well
	futex: Add mutex around futex exit
	futex: Provide distinct return value when owner is exiting
	futex: Prevent exit livelock
	futex: Ensure the correct return value from futex_lock_pi()
	futex: Replace pointless printk in fixup_owner()
	futex: Provide and use pi_state_update_owner()
	rtmutex: Remove unused argument from rt_mutex_proxy_unlock()
	futex: Use pi_state_update_owner() in put_pi_state()
	futex: Simplify fixup_pi_state_owner()
	futex: Handle faults correctly for PI futexes
	HID: wacom: Correct NULL dereference on AES pen proximity
	tracing: Fix race in trace_open and buffer resize call
	tools: Factor HOSTCC, HOSTLD, HOSTAR definitions
	dm integrity: conditionally disable "recalculate" feature
	writeback: Drop I_DIRTY_TIME_EXPIRE
	fs: fix lazytime expiration handling in __writeback_single_inode()
	Linux 4.19.172

Signed-off-by: Greg Kroah-Hartman <gregkh@google.com>
Change-Id: I9b5391e9e955a105ab9c144fa6258dcbea234211
This commit is contained in:
Greg Kroah-Hartman
2021-01-30 15:05:40 +01:00
24 changed files with 453 additions and 288 deletions

View File

@@ -146,6 +146,13 @@ block_size:number
Supported values are 512, 1024, 2048 and 4096 bytes. If not
specified the default block size is 512 bytes.
legacy_recalculate
Allow recalculating of volumes with HMAC keys. This is disabled by
default for security reasons - an attacker could modify the volume,
set recalc_sector to zero, and the kernel would not detect the
modification.
The journal mode (D/J), buffer_sectors, journal_watermark, commit_time can
be changed when reloading the target (load an inactive table and swap the
tables with suspend and resume). The other arguments should not be changed

View File

@@ -1,7 +1,7 @@
# SPDX-License-Identifier: GPL-2.0
VERSION = 4
PATCHLEVEL = 19
SUBLEVEL = 171
SUBLEVEL = 172
EXTRAVERSION =
NAME = "People's Front"

View File

@@ -650,9 +650,8 @@ static void mvebu_pwm_get_state(struct pwm_chip *chip,
spin_lock_irqsave(&mvpwm->lock, flags);
val = (unsigned long long)
readl_relaxed(mvebu_pwmreg_blink_on_duration(mvpwm));
val *= NSEC_PER_SEC;
u = readl_relaxed(mvebu_pwmreg_blink_on_duration(mvpwm));
val = (unsigned long long) u * NSEC_PER_SEC;
do_div(val, mvpwm->clk_rate);
if (val > UINT_MAX)
state->duty_cycle = UINT_MAX;
@@ -661,21 +660,17 @@ static void mvebu_pwm_get_state(struct pwm_chip *chip,
else
state->duty_cycle = 1;
val = (unsigned long long)
readl_relaxed(mvebu_pwmreg_blink_off_duration(mvpwm));
val = (unsigned long long) u; /* on duration */
/* period = on + off duration */
val += readl_relaxed(mvebu_pwmreg_blink_off_duration(mvpwm));
val *= NSEC_PER_SEC;
do_div(val, mvpwm->clk_rate);
if (val < state->duty_cycle) {
state->period = 1;
} else {
val -= state->duty_cycle;
if (val > UINT_MAX)
state->period = UINT_MAX;
else if (val)
state->period = val;
else
state->period = 1;
}
regmap_read(mvchip->regs, GPIO_BLINK_EN_OFF + mvchip->offset, &u);
if (u)

View File

@@ -150,9 +150,9 @@ static int wacom_wac_pen_serial_enforce(struct hid_device *hdev,
}
if (flush)
wacom_wac_queue_flush(hdev, &wacom_wac->pen_fifo);
wacom_wac_queue_flush(hdev, wacom_wac->pen_fifo);
else if (insert)
wacom_wac_queue_insert(hdev, &wacom_wac->pen_fifo,
wacom_wac_queue_insert(hdev, wacom_wac->pen_fifo,
raw_data, report_size);
return insert && !flush;
@@ -1251,7 +1251,7 @@ static void wacom_devm_kfifo_release(struct device *dev, void *res)
static int wacom_devm_kfifo_alloc(struct wacom *wacom)
{
struct wacom_wac *wacom_wac = &wacom->wacom_wac;
struct kfifo_rec_ptr_2 *pen_fifo = &wacom_wac->pen_fifo;
struct kfifo_rec_ptr_2 *pen_fifo;
int error;
pen_fifo = devres_alloc(wacom_devm_kfifo_release,
@@ -1268,6 +1268,7 @@ static int wacom_devm_kfifo_alloc(struct wacom *wacom)
}
devres_add(&wacom->hdev->dev, pen_fifo);
wacom_wac->pen_fifo = pen_fifo;
return 0;
}

View File

@@ -344,7 +344,7 @@ struct wacom_wac {
struct input_dev *pen_input;
struct input_dev *touch_input;
struct input_dev *pad_input;
struct kfifo_rec_ptr_2 pen_fifo;
struct kfifo_rec_ptr_2 *pen_fifo;
int pid;
int num_contacts_left;
u8 bt_features;

View File

@@ -240,6 +240,7 @@ struct dm_integrity_c {
bool journal_uptodate;
bool just_formatted;
bool legacy_recalculate;
struct alg_spec internal_hash_alg;
struct alg_spec journal_crypt_alg;
@@ -345,6 +346,14 @@ static int dm_integrity_failed(struct dm_integrity_c *ic)
return READ_ONCE(ic->failed);
}
static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
{
if ((ic->internal_hash_alg.key || ic->journal_mac_alg.key) &&
!ic->legacy_recalculate)
return true;
return false;
}
static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i,
unsigned j, unsigned char seq)
{
@@ -2503,6 +2512,7 @@ static void dm_integrity_status(struct dm_target *ti, status_type_t type,
arg_count += !!ic->internal_hash_alg.alg_string;
arg_count += !!ic->journal_crypt_alg.alg_string;
arg_count += !!ic->journal_mac_alg.alg_string;
arg_count += ic->legacy_recalculate;
DMEMIT("%s %llu %u %c %u", ic->dev->name, (unsigned long long)ic->start,
ic->tag_size, ic->mode, arg_count);
if (ic->meta_dev)
@@ -2516,6 +2526,8 @@ static void dm_integrity_status(struct dm_target *ti, status_type_t type,
DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage);
DMEMIT(" commit_time:%u", ic->autocommit_msec);
if (ic->legacy_recalculate)
DMEMIT(" legacy_recalculate");
#define EMIT_ALG(a, n) \
do { \
@@ -3118,7 +3130,7 @@ static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv)
unsigned extra_args;
struct dm_arg_set as;
static const struct dm_arg _args[] = {
{0, 15, "Invalid number of feature args"},
{0, 12, "Invalid number of feature args"},
};
unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
bool recalculate;
@@ -3248,6 +3260,8 @@ static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv)
goto bad;
} else if (!strcmp(opt_string, "recalculate")) {
recalculate = true;
} else if (!strcmp(opt_string, "legacy_recalculate")) {
ic->legacy_recalculate = true;
} else {
r = -EINVAL;
ti->error = "Invalid argument";
@@ -3523,6 +3537,14 @@ static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv)
}
}
if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
dm_integrity_disable_recalculate(ic)) {
ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
r = -EOPNOTSUPP;
goto bad;
}
ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL);
if (IS_ERR(ic->bufio)) {

View File

@@ -1011,7 +1011,7 @@ static int exec_mmap(struct mm_struct *mm)
/* Notify parent that we're no longer interested in the old VM */
tsk = current;
old_mm = current->mm;
mm_release(tsk, old_mm);
exec_mm_release(tsk, old_mm);
if (old_mm) {
sync_mm_rss(old_mm);

View File

@@ -1392,22 +1392,26 @@ __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
ret = err;
}
/*
* If the inode has dirty timestamps and we need to write them, call
* mark_inode_dirty_sync() to notify the filesystem about it and to
* change I_DIRTY_TIME into I_DIRTY_SYNC.
*/
if ((inode->i_state & I_DIRTY_TIME) &&
(wbc->sync_mode == WB_SYNC_ALL || wbc->for_sync ||
time_after(jiffies, inode->dirtied_time_when +
dirtytime_expire_interval * HZ))) {
trace_writeback_lazytime(inode);
mark_inode_dirty_sync(inode);
}
/*
* Some filesystems may redirty the inode during the writeback
* due to delalloc, clear dirty metadata flags right before
* write_inode()
*/
spin_lock(&inode->i_lock);
dirty = inode->i_state & I_DIRTY;
if ((inode->i_state & I_DIRTY_TIME) &&
((dirty & I_DIRTY_INODE) ||
wbc->sync_mode == WB_SYNC_ALL || wbc->for_sync ||
time_after(jiffies, inode->dirtied_time_when +
dirtytime_expire_interval * HZ))) {
dirty |= I_DIRTY_TIME;
trace_writeback_lazytime(inode);
}
inode->i_state &= ~dirty;
/*
@@ -1428,8 +1432,6 @@ __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
spin_unlock(&inode->i_lock);
if (dirty & I_DIRTY_TIME)
mark_inode_dirty_sync(inode);
/* Don't write the inode if only I_DIRTY_PAGES was set */
if (dirty & ~I_DIRTY_PAGES) {
int err = write_inode(inode, wbc);

View File

@@ -445,8 +445,6 @@ struct compat_kexec_segment;
struct compat_mq_attr;
struct compat_msgbuf;
extern void compat_exit_robust_list(struct task_struct *curr);
#define BITS_PER_COMPAT_LONG (8*sizeof(compat_long_t))
#define BITS_TO_COMPAT_LONGS(bits) DIV_ROUND_UP(bits, BITS_PER_COMPAT_LONG)

View File

@@ -2,7 +2,9 @@
#ifndef _LINUX_FUTEX_H
#define _LINUX_FUTEX_H
#include <linux/sched.h>
#include <linux/ktime.h>
#include <uapi/linux/futex.h>
struct inode;
@@ -51,15 +53,35 @@ union futex_key {
#define FUTEX_KEY_INIT (union futex_key) { .both = { .ptr = 0ULL } }
#ifdef CONFIG_FUTEX
extern void exit_robust_list(struct task_struct *curr);
enum {
FUTEX_STATE_OK,
FUTEX_STATE_EXITING,
FUTEX_STATE_DEAD,
};
static inline void futex_init_task(struct task_struct *tsk)
{
tsk->robust_list = NULL;
#ifdef CONFIG_COMPAT
tsk->compat_robust_list = NULL;
#endif
INIT_LIST_HEAD(&tsk->pi_state_list);
tsk->pi_state_cache = NULL;
tsk->futex_state = FUTEX_STATE_OK;
mutex_init(&tsk->futex_exit_mutex);
}
void futex_exit_recursive(struct task_struct *tsk);
void futex_exit_release(struct task_struct *tsk);
void futex_exec_release(struct task_struct *tsk);
long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
u32 __user *uaddr2, u32 val2, u32 val3);
#else
static inline void exit_robust_list(struct task_struct *curr)
{
}
static inline void futex_init_task(struct task_struct *tsk) { }
static inline void futex_exit_recursive(struct task_struct *tsk) { }
static inline void futex_exit_release(struct task_struct *tsk) { }
static inline void futex_exec_release(struct task_struct *tsk) { }
static inline long do_futex(u32 __user *uaddr, int op, u32 val,
ktime_t *timeout, u32 __user *uaddr2,
u32 val2, u32 val3)
@@ -68,12 +90,4 @@ static inline long do_futex(u32 __user *uaddr, int op, u32 val,
}
#endif
#ifdef CONFIG_FUTEX_PI
extern void exit_pi_state_list(struct task_struct *curr);
#else
static inline void exit_pi_state_list(struct task_struct *curr)
{
}
#endif
#endif

View File

@@ -1080,6 +1080,8 @@ struct task_struct {
#endif
struct list_head pi_state_list;
struct futex_pi_state *pi_state_cache;
struct mutex futex_exit_mutex;
unsigned int futex_state;
#endif
#ifdef CONFIG_PERF_EVENTS
struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
@@ -1479,7 +1481,6 @@ extern struct pid *cad_pid;
*/
#define PF_IDLE 0x00000002 /* I am an IDLE thread */
#define PF_EXITING 0x00000004 /* Getting shut down */
#define PF_EXITPIDONE 0x00000008 /* PI exit done on shut down */
#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
#define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */

View File

@@ -119,8 +119,10 @@ extern struct mm_struct *get_task_mm(struct task_struct *task);
* succeeds.
*/
extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
/* Remove the current tasks stale references to the old mm_struct */
extern void mm_release(struct task_struct *, struct mm_struct *);
/* Remove the current tasks stale references to the old mm_struct on exit() */
extern void exit_mm_release(struct task_struct *, struct mm_struct *);
/* Remove the current tasks stale references to the old mm_struct on exec() */
extern void exec_mm_release(struct task_struct *, struct mm_struct *);
#ifdef CONFIG_MEMCG
extern void mm_update_next_owner(struct mm_struct *mm);

View File

@@ -498,7 +498,7 @@ static void exit_mm(void)
struct mm_struct *mm = current->mm;
struct core_state *core_state;
mm_release(current, mm);
exit_mm_release(current, mm);
if (!mm)
return;
sync_mm_rss(mm);
@@ -819,32 +819,12 @@ void __noreturn do_exit(long code)
*/
if (unlikely(tsk->flags & PF_EXITING)) {
pr_alert("Fixing recursive fault but reboot is needed!\n");
/*
* We can do this unlocked here. The futex code uses
* this flag just to verify whether the pi state
* cleanup has been done or not. In the worst case it
* loops once more. We pretend that the cleanup was
* done as there is no way to return. Either the
* OWNER_DIED bit is set by now or we push the blocked
* task into the wait for ever nirwana as well.
*/
tsk->flags |= PF_EXITPIDONE;
futex_exit_recursive(tsk);
set_current_state(TASK_UNINTERRUPTIBLE);
schedule();
}
exit_signals(tsk); /* sets PF_EXITING */
/*
* Ensure that all new tsk->pi_lock acquisitions must observe
* PF_EXITING. Serializes against futex.c:attach_to_pi_owner().
*/
smp_mb();
/*
* Ensure that we must observe the pi_state in exit_mm() ->
* mm_release() -> exit_pi_state_list().
*/
raw_spin_lock_irq(&tsk->pi_lock);
raw_spin_unlock_irq(&tsk->pi_lock);
/* sync mm's RSS info before statistics gathering */
if (tsk->mm)
@@ -919,12 +899,6 @@ void __noreturn do_exit(long code)
* Make sure we are holding no locks:
*/
debug_check_no_locks_held();
/*
* We can do this unlocked here. The futex code uses this flag
* just to verify whether the pi state cleanup has been done
* or not. In the worst case it loops once more.
*/
tsk->flags |= PF_EXITPIDONE;
if (tsk->io_context)
exit_io_context(tsk);

View File

@@ -1232,24 +1232,8 @@ static int wait_for_vfork_done(struct task_struct *child,
* restoring the old one. . .
* Eric Biederman 10 January 1998
*/
void mm_release(struct task_struct *tsk, struct mm_struct *mm)
static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
{
/* Get rid of any futexes when releasing the mm */
#ifdef CONFIG_FUTEX
if (unlikely(tsk->robust_list)) {
exit_robust_list(tsk);
tsk->robust_list = NULL;
}
#ifdef CONFIG_COMPAT
if (unlikely(tsk->compat_robust_list)) {
compat_exit_robust_list(tsk);
tsk->compat_robust_list = NULL;
}
#endif
if (unlikely(!list_empty(&tsk->pi_state_list)))
exit_pi_state_list(tsk);
#endif
uprobe_free_utask(tsk);
/* Get rid of any cached register state */
@@ -1282,6 +1266,18 @@ void mm_release(struct task_struct *tsk, struct mm_struct *mm)
complete_vfork_done(tsk);
}
void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
{
futex_exit_release(tsk);
mm_release(tsk, mm);
}
void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
{
futex_exec_release(tsk);
mm_release(tsk, mm);
}
/*
* Allocate a new mm structure and copy contents from the
* mm structure of the passed in task structure.
@@ -2066,14 +2062,8 @@ static __latent_entropy struct task_struct *copy_process(
#ifdef CONFIG_BLOCK
p->plug = NULL;
#endif
#ifdef CONFIG_FUTEX
p->robust_list = NULL;
#ifdef CONFIG_COMPAT
p->compat_robust_list = NULL;
#endif
INIT_LIST_HEAD(&p->pi_state_list);
p->pi_state_cache = NULL;
#endif
futex_init_task(p);
/*
* sigaltstack should be cleared when sharing the same VM
*/

View File

@@ -341,6 +341,12 @@ static inline bool should_fail_futex(bool fshared)
}
#endif /* CONFIG_FAIL_FUTEX */
#ifdef CONFIG_COMPAT
static void compat_exit_robust_list(struct task_struct *curr);
#else
static inline void compat_exit_robust_list(struct task_struct *curr) { }
#endif
static inline void futex_get_mm(union futex_key *key)
{
mmgrab(key->private.mm);
@@ -833,6 +839,29 @@ static struct futex_pi_state *alloc_pi_state(void)
return pi_state;
}
static void pi_state_update_owner(struct futex_pi_state *pi_state,
struct task_struct *new_owner)
{
struct task_struct *old_owner = pi_state->owner;
lockdep_assert_held(&pi_state->pi_mutex.wait_lock);
if (old_owner) {
raw_spin_lock(&old_owner->pi_lock);
WARN_ON(list_empty(&pi_state->list));
list_del_init(&pi_state->list);
raw_spin_unlock(&old_owner->pi_lock);
}
if (new_owner) {
raw_spin_lock(&new_owner->pi_lock);
WARN_ON(!list_empty(&pi_state->list));
list_add(&pi_state->list, &new_owner->pi_state_list);
pi_state->owner = new_owner;
raw_spin_unlock(&new_owner->pi_lock);
}
}
static void get_pi_state(struct futex_pi_state *pi_state)
{
WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
@@ -855,17 +884,11 @@ static void put_pi_state(struct futex_pi_state *pi_state)
* and has cleaned up the pi_state already
*/
if (pi_state->owner) {
struct task_struct *owner;
unsigned long flags;
raw_spin_lock_irqsave(&pi_state->pi_mutex.wait_lock, flags);
owner = pi_state->owner;
if (owner) {
raw_spin_lock(&owner->pi_lock);
list_del_init(&pi_state->list);
raw_spin_unlock(&owner->pi_lock);
}
rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
pi_state_update_owner(pi_state, NULL);
rt_mutex_proxy_unlock(&pi_state->pi_mutex);
raw_spin_unlock_irqrestore(&pi_state->pi_mutex.wait_lock, flags);
}
@@ -890,7 +913,7 @@ static void put_pi_state(struct futex_pi_state *pi_state)
* Kernel cleans up PI-state, but userspace is likely hosed.
* (Robust-futex cleanup is separate and might save the day for userspace.)
*/
void exit_pi_state_list(struct task_struct *curr)
static void exit_pi_state_list(struct task_struct *curr)
{
struct list_head *next, *head = &curr->pi_state_list;
struct futex_pi_state *pi_state;
@@ -960,7 +983,8 @@ void exit_pi_state_list(struct task_struct *curr)
}
raw_spin_unlock_irq(&curr->pi_lock);
}
#else
static inline void exit_pi_state_list(struct task_struct *curr) { }
#endif
/*
@@ -1010,7 +1034,8 @@ void exit_pi_state_list(struct task_struct *curr)
* FUTEX_OWNER_DIED bit. See [4]
*
* [10] There is no transient state which leaves owner and user space
* TID out of sync.
* TID out of sync. Except one error case where the kernel is denied
* write access to the user address, see fixup_pi_state_owner().
*
*
* Serialization and lifetime rules:
@@ -1169,16 +1194,47 @@ static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
return ret;
}
/**
* wait_for_owner_exiting - Block until the owner has exited
* @exiting: Pointer to the exiting task
*
* Caller must hold a refcount on @exiting.
*/
static void wait_for_owner_exiting(int ret, struct task_struct *exiting)
{
if (ret != -EBUSY) {
WARN_ON_ONCE(exiting);
return;
}
if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
return;
mutex_lock(&exiting->futex_exit_mutex);
/*
* No point in doing state checking here. If the waiter got here
* while the task was in exec()->exec_futex_release() then it can
* have any FUTEX_STATE_* value when the waiter has acquired the
* mutex. OK, if running, EXITING or DEAD if it reached exit()
* already. Highly unlikely and not a problem. Just one more round
* through the futex maze.
*/
mutex_unlock(&exiting->futex_exit_mutex);
put_task_struct(exiting);
}
static int handle_exit_race(u32 __user *uaddr, u32 uval,
struct task_struct *tsk)
{
u32 uval2;
/*
* If PF_EXITPIDONE is not yet set, then try again.
* If the futex exit state is not yet FUTEX_STATE_DEAD, tell the
* caller that the alleged owner is busy.
*/
if (tsk && !(tsk->flags & PF_EXITPIDONE))
return -EAGAIN;
if (tsk && tsk->futex_state != FUTEX_STATE_DEAD)
return -EBUSY;
/*
* Reread the user space value to handle the following situation:
@@ -1196,8 +1252,9 @@ static int handle_exit_race(u32 __user *uaddr, u32 uval,
* *uaddr = 0xC0000000; tsk = get_task(PID);
* } if (!tsk->flags & PF_EXITING) {
* ... attach();
* tsk->flags |= PF_EXITPIDONE; } else {
* if (!(tsk->flags & PF_EXITPIDONE))
* tsk->futex_state = } else {
* FUTEX_STATE_DEAD; if (tsk->futex_state !=
* FUTEX_STATE_DEAD)
* return -EAGAIN;
* return -ESRCH; <--- FAIL
* }
@@ -1228,7 +1285,8 @@ static int handle_exit_race(u32 __user *uaddr, u32 uval,
* it after doing proper sanity checks.
*/
static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
struct futex_pi_state **ps)
struct futex_pi_state **ps,
struct task_struct **exiting)
{
pid_t pid = uval & FUTEX_TID_MASK;
struct futex_pi_state *pi_state;
@@ -1253,21 +1311,32 @@ static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
}
/*
* We need to look at the task state flags to figure out,
* whether the task is exiting. To protect against the do_exit
* change of the task flags, we do this protected by
* p->pi_lock:
* We need to look at the task state to figure out, whether the
* task is exiting. To protect against the change of the task state
* in futex_exit_release(), we do this protected by p->pi_lock:
*/
raw_spin_lock_irq(&p->pi_lock);
if (unlikely(p->flags & PF_EXITING)) {
if (unlikely(p->futex_state != FUTEX_STATE_OK)) {
/*
* The task is on the way out. When PF_EXITPIDONE is
* set, we know that the task has finished the
* cleanup:
* The task is on the way out. When the futex state is
* FUTEX_STATE_DEAD, we know that the task has finished
* the cleanup:
*/
int ret = handle_exit_race(uaddr, uval, p);
raw_spin_unlock_irq(&p->pi_lock);
/*
* If the owner task is between FUTEX_STATE_EXITING and
* FUTEX_STATE_DEAD then store the task pointer and keep
* the reference on the task struct. The calling code will
* drop all locks, wait for the task to reach
* FUTEX_STATE_DEAD and then drop the refcount. This is
* required to prevent a live lock when the current task
* preempted the exiting task between the two states.
*/
if (ret == -EBUSY)
*exiting = p;
else
put_task_struct(p);
return ret;
}
@@ -1307,7 +1376,8 @@ static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
static int lookup_pi_state(u32 __user *uaddr, u32 uval,
struct futex_hash_bucket *hb,
union futex_key *key, struct futex_pi_state **ps)
union futex_key *key, struct futex_pi_state **ps,
struct task_struct **exiting)
{
struct futex_q *top_waiter = futex_top_waiter(hb, key);
@@ -1322,7 +1392,7 @@ static int lookup_pi_state(u32 __user *uaddr, u32 uval,
* We are the first waiter - try to look up the owner based on
* @uval and attach to it.
*/
return attach_to_pi_owner(uaddr, uval, key, ps);
return attach_to_pi_owner(uaddr, uval, key, ps, exiting);
}
static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
@@ -1350,6 +1420,8 @@ static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
* lookup
* @task: the task to perform the atomic lock work for. This will
* be "current" except in the case of requeue pi.
* @exiting: Pointer to store the task pointer of the owner task
* which is in the middle of exiting
* @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
*
* Return:
@@ -1358,11 +1430,17 @@ static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
* - <0 - error
*
* The hb->lock and futex_key refs shall be held by the caller.
*
* @exiting is only set when the return value is -EBUSY. If so, this holds
* a refcount on the exiting task on return and the caller needs to drop it
* after waiting for the exit to complete.
*/
static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
union futex_key *key,
struct futex_pi_state **ps,
struct task_struct *task, int set_waiters)
struct task_struct *task,
struct task_struct **exiting,
int set_waiters)
{
u32 uval, newval, vpid = task_pid_vnr(task);
struct futex_q *top_waiter;
@@ -1432,7 +1510,7 @@ static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
* attach to the owner. If that fails, no harm done, we only
* set the FUTEX_WAITERS bit in the user space variable.
*/
return attach_to_pi_owner(uaddr, newval, key, ps);
return attach_to_pi_owner(uaddr, newval, key, ps, exiting);
}
/**
@@ -1537,26 +1615,15 @@ static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_
ret = -EINVAL;
}
if (ret)
goto out_unlock;
if (!ret) {
/*
* This is a point of no return; once we modify the uval there is no
* going back and subsequent operations must not fail.
* This is a point of no return; once we modified the uval
* there is no going back and subsequent operations must
* not fail.
*/
raw_spin_lock(&pi_state->owner->pi_lock);
WARN_ON(list_empty(&pi_state->list));
list_del_init(&pi_state->list);
raw_spin_unlock(&pi_state->owner->pi_lock);
raw_spin_lock(&new_owner->pi_lock);
WARN_ON(!list_empty(&pi_state->list));
list_add(&pi_state->list, &new_owner->pi_state_list);
pi_state->owner = new_owner;
raw_spin_unlock(&new_owner->pi_lock);
pi_state_update_owner(pi_state, new_owner);
postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
}
out_unlock:
raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
@@ -1853,6 +1920,8 @@ void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
* @key1: the from futex key
* @key2: the to futex key
* @ps: address to store the pi_state pointer
* @exiting: Pointer to store the task pointer of the owner task
* which is in the middle of exiting
* @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
*
* Try and get the lock on behalf of the top waiter if we can do it atomically.
@@ -1860,16 +1929,20 @@ void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
* then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
* hb1 and hb2 must be held by the caller.
*
* @exiting is only set when the return value is -EBUSY. If so, this holds
* a refcount on the exiting task on return and the caller needs to drop it
* after waiting for the exit to complete.
*
* Return:
* - 0 - failed to acquire the lock atomically;
* - >0 - acquired the lock, return value is vpid of the top_waiter
* - <0 - error
*/
static int futex_proxy_trylock_atomic(u32 __user *pifutex,
struct futex_hash_bucket *hb1,
struct futex_hash_bucket *hb2,
union futex_key *key1, union futex_key *key2,
struct futex_pi_state **ps, int set_waiters)
static int
futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
struct futex_hash_bucket *hb2, union futex_key *key1,
union futex_key *key2, struct futex_pi_state **ps,
struct task_struct **exiting, int set_waiters)
{
struct futex_q *top_waiter = NULL;
u32 curval;
@@ -1906,7 +1979,7 @@ static int futex_proxy_trylock_atomic(u32 __user *pifutex,
*/
vpid = task_pid_vnr(top_waiter->task);
ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
set_waiters);
exiting, set_waiters);
if (ret == 1) {
requeue_pi_wake_futex(top_waiter, key2, hb2);
return vpid;
@@ -2035,6 +2108,8 @@ static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
}
if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
struct task_struct *exiting = NULL;
/*
* Attempt to acquire uaddr2 and wake the top waiter. If we
* intend to requeue waiters, force setting the FUTEX_WAITERS
@@ -2042,7 +2117,8 @@ static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
* faults rather in the requeue loop below.
*/
ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
&key2, &pi_state, nr_requeue);
&key2, &pi_state,
&exiting, nr_requeue);
/*
* At this point the top_waiter has either taken uaddr2 or is
@@ -2069,7 +2145,8 @@ static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
* If that call succeeds then we have pi_state and an
* initial refcount on it.
*/
ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
ret = lookup_pi_state(uaddr2, ret, hb2, &key2,
&pi_state, &exiting);
}
switch (ret) {
@@ -2087,17 +2164,24 @@ static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
if (!ret)
goto retry;
goto out;
case -EBUSY:
case -EAGAIN:
/*
* Two reasons for this:
* - Owner is exiting and we just wait for the
* - EBUSY: Owner is exiting and we just wait for the
* exit to complete.
* - The user space value changed.
* - EAGAIN: The user space value changed.
*/
double_unlock_hb(hb1, hb2);
hb_waiters_dec(hb2);
put_futex_key(&key2);
put_futex_key(&key1);
/*
* Handle the case where the owner is in the middle of
* exiting. Wait for the exit to complete otherwise
* this task might loop forever, aka. live lock.
*/
wait_for_owner_exiting(ret, exiting);
cond_resched();
goto retry;
default:
@@ -2362,18 +2446,13 @@ static void unqueue_me_pi(struct futex_q *q)
spin_unlock(q->lock_ptr);
}
static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
static int __fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
struct task_struct *argowner)
{
u32 uval, uninitialized_var(curval), newval, newtid;
struct futex_pi_state *pi_state = q->pi_state;
u32 uval, uninitialized_var(curval), newval;
struct task_struct *oldowner, *newowner;
u32 newtid;
int ret, err = 0;
lockdep_assert_held(q->lock_ptr);
raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
int err = 0;
oldowner = pi_state->owner;
@@ -2407,14 +2486,12 @@ static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
* We raced against a concurrent self; things are
* already fixed up. Nothing to do.
*/
ret = 0;
goto out_unlock;
return 0;
}
if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
/* We got the lock after all, nothing to fix. */
ret = 0;
goto out_unlock;
/* We got the lock. pi_state is correct. Tell caller. */
return 1;
}
/*
@@ -2441,8 +2518,7 @@ static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
* We raced against a concurrent self; things are
* already fixed up. Nothing to do.
*/
ret = 0;
goto out_unlock;
return 1;
}
newowner = argowner;
}
@@ -2472,22 +2548,9 @@ static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
* We fixed up user space. Now we need to fix the pi_state
* itself.
*/
if (pi_state->owner != NULL) {
raw_spin_lock(&pi_state->owner->pi_lock);
WARN_ON(list_empty(&pi_state->list));
list_del_init(&pi_state->list);
raw_spin_unlock(&pi_state->owner->pi_lock);
}
pi_state_update_owner(pi_state, newowner);
pi_state->owner = newowner;
raw_spin_lock(&newowner->pi_lock);
WARN_ON(!list_empty(&pi_state->list));
list_add(&pi_state->list, &newowner->pi_state_list);
raw_spin_unlock(&newowner->pi_lock);
raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
return 0;
return argowner == current;
/*
* In order to reschedule or handle a page fault, we need to drop the
@@ -2508,17 +2571,16 @@ static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
switch (err) {
case -EFAULT:
ret = fault_in_user_writeable(uaddr);
err = fault_in_user_writeable(uaddr);
break;
case -EAGAIN:
cond_resched();
ret = 0;
err = 0;
break;
default:
WARN_ON_ONCE(1);
ret = err;
break;
}
@@ -2528,17 +2590,44 @@ static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
/*
* Check if someone else fixed it for us:
*/
if (pi_state->owner != oldowner) {
ret = 0;
goto out_unlock;
}
if (ret)
goto out_unlock;
if (pi_state->owner != oldowner)
return argowner == current;
/* Retry if err was -EAGAIN or the fault in succeeded */
if (!err)
goto retry;
out_unlock:
/*
* fault_in_user_writeable() failed so user state is immutable. At
* best we can make the kernel state consistent but user state will
* be most likely hosed and any subsequent unlock operation will be
* rejected due to PI futex rule [10].
*
* Ensure that the rtmutex owner is also the pi_state owner despite
* the user space value claiming something different. There is no
* point in unlocking the rtmutex if current is the owner as it
* would need to wait until the next waiter has taken the rtmutex
* to guarantee consistent state. Keep it simple. Userspace asked
* for this wreckaged state.
*
* The rtmutex has an owner - either current or some other
* task. See the EAGAIN loop above.
*/
pi_state_update_owner(pi_state, rt_mutex_owner(&pi_state->pi_mutex));
return err;
}
static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
struct task_struct *argowner)
{
struct futex_pi_state *pi_state = q->pi_state;
int ret;
lockdep_assert_held(q->lock_ptr);
raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
ret = __fixup_pi_state_owner(uaddr, q, argowner);
raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
return ret;
}
@@ -2562,8 +2651,6 @@ static long futex_wait_restart(struct restart_block *restart);
*/
static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
{
int ret = 0;
if (locked) {
/*
* Got the lock. We might not be the anticipated owner if we
@@ -2574,8 +2661,8 @@ static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
* stable state, anything else needs more attention.
*/
if (q->pi_state->owner != current)
ret = fixup_pi_state_owner(uaddr, q, current);
goto out;
return fixup_pi_state_owner(uaddr, q, current);
return 1;
}
/*
@@ -2586,24 +2673,17 @@ static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
* Another speculative read; pi_state->owner == current is unstable
* but needs our attention.
*/
if (q->pi_state->owner == current) {
ret = fixup_pi_state_owner(uaddr, q, NULL);
goto out;
}
if (q->pi_state->owner == current)
return fixup_pi_state_owner(uaddr, q, NULL);
/*
* Paranoia check. If we did not take the lock, then we should not be
* the owner of the rt_mutex.
* the owner of the rt_mutex. Warn and establish consistent state.
*/
if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
"pi-state %p\n", ret,
q->pi_state->pi_mutex.owner,
q->pi_state->owner);
}
if (WARN_ON_ONCE(rt_mutex_owner(&q->pi_state->pi_mutex) == current))
return fixup_pi_state_owner(uaddr, q, current);
out:
return ret ? ret : locked;
return 0;
}
/**
@@ -2824,7 +2904,7 @@ static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
ktime_t *time, int trylock)
{
struct hrtimer_sleeper timeout, *to = NULL;
struct futex_pi_state *pi_state = NULL;
struct task_struct *exiting = NULL;
struct rt_mutex_waiter rt_waiter;
struct futex_hash_bucket *hb;
struct futex_q q = futex_q_init;
@@ -2852,7 +2932,8 @@ static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
retry_private:
hb = queue_lock(&q);
ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current,
&exiting, 0);
if (unlikely(ret)) {
/*
* Atomic work succeeded and we got the lock,
@@ -2865,15 +2946,22 @@ static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
goto out_unlock_put_key;
case -EFAULT:
goto uaddr_faulted;
case -EBUSY:
case -EAGAIN:
/*
* Two reasons for this:
* - Task is exiting and we just wait for the
* - EBUSY: Task is exiting and we just wait for the
* exit to complete.
* - The user space value changed.
* - EAGAIN: The user space value changed.
*/
queue_unlock(hb);
put_futex_key(&q.key);
/*
* Handle the case where the owner is in the middle of
* exiting. Wait for the exit to complete otherwise
* this task might loop forever, aka. live lock.
*/
wait_for_owner_exiting(ret, exiting);
cond_resched();
goto retry;
default:
@@ -2958,23 +3046,9 @@ static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
if (res)
ret = (res < 0) ? res : 0;
/*
* If fixup_owner() faulted and was unable to handle the fault, unlock
* it and return the fault to userspace.
*/
if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
pi_state = q.pi_state;
get_pi_state(pi_state);
}
/* Unqueue and drop the lock */
unqueue_me_pi(&q);
if (pi_state) {
rt_mutex_futex_unlock(&pi_state->pi_mutex);
put_pi_state(pi_state);
}
goto out_put_key;
out_unlock_put_key:
@@ -3240,7 +3314,6 @@ static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
u32 __user *uaddr2)
{
struct hrtimer_sleeper timeout, *to = NULL;
struct futex_pi_state *pi_state = NULL;
struct rt_mutex_waiter rt_waiter;
struct futex_hash_bucket *hb;
union futex_key key2 = FUTEX_KEY_INIT;
@@ -3325,16 +3398,17 @@ static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
if (q.pi_state && (q.pi_state->owner != current)) {
spin_lock(q.lock_ptr);
ret = fixup_pi_state_owner(uaddr2, &q, current);
if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
pi_state = q.pi_state;
get_pi_state(pi_state);
}
/*
* Drop the reference to the pi state which
* the requeue_pi() code acquired for us.
*/
put_pi_state(q.pi_state);
spin_unlock(q.lock_ptr);
/*
* Adjust the return value. It's either -EFAULT or
* success (1) but the caller expects 0 for success.
*/
ret = ret < 0 ? ret : 0;
}
} else {
struct rt_mutex *pi_mutex;
@@ -3365,25 +3439,10 @@ static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
if (res)
ret = (res < 0) ? res : 0;
/*
* If fixup_pi_state_owner() faulted and was unable to handle
* the fault, unlock the rt_mutex and return the fault to
* userspace.
*/
if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
pi_state = q.pi_state;
get_pi_state(pi_state);
}
/* Unqueue and drop the lock. */
unqueue_me_pi(&q);
}
if (pi_state) {
rt_mutex_futex_unlock(&pi_state->pi_mutex);
put_pi_state(pi_state);
}
if (ret == -EINTR) {
/*
* We've already been requeued, but cannot restart by calling
@@ -3625,7 +3684,7 @@ static inline int fetch_robust_entry(struct robust_list __user **entry,
*
* We silently return on any sign of list-walking problem.
*/
void exit_robust_list(struct task_struct *curr)
static void exit_robust_list(struct task_struct *curr)
{
struct robust_list_head __user *head = curr->robust_list;
struct robust_list __user *entry, *next_entry, *pending;
@@ -3690,6 +3749,114 @@ void exit_robust_list(struct task_struct *curr)
}
}
static void futex_cleanup(struct task_struct *tsk)
{
if (unlikely(tsk->robust_list)) {
exit_robust_list(tsk);
tsk->robust_list = NULL;
}
#ifdef CONFIG_COMPAT
if (unlikely(tsk->compat_robust_list)) {
compat_exit_robust_list(tsk);
tsk->compat_robust_list = NULL;
}
#endif
if (unlikely(!list_empty(&tsk->pi_state_list)))
exit_pi_state_list(tsk);
}
/**
* futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
* @tsk: task to set the state on
*
* Set the futex exit state of the task lockless. The futex waiter code
* observes that state when a task is exiting and loops until the task has
* actually finished the futex cleanup. The worst case for this is that the
* waiter runs through the wait loop until the state becomes visible.
*
* This is called from the recursive fault handling path in do_exit().
*
* This is best effort. Either the futex exit code has run already or
* not. If the OWNER_DIED bit has been set on the futex then the waiter can
* take it over. If not, the problem is pushed back to user space. If the
* futex exit code did not run yet, then an already queued waiter might
* block forever, but there is nothing which can be done about that.
*/
void futex_exit_recursive(struct task_struct *tsk)
{
/* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
if (tsk->futex_state == FUTEX_STATE_EXITING)
mutex_unlock(&tsk->futex_exit_mutex);
tsk->futex_state = FUTEX_STATE_DEAD;
}
static void futex_cleanup_begin(struct task_struct *tsk)
{
/*
* Prevent various race issues against a concurrent incoming waiter
* including live locks by forcing the waiter to block on
* tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
* attach_to_pi_owner().
*/
mutex_lock(&tsk->futex_exit_mutex);
/*
* Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
*
* This ensures that all subsequent checks of tsk->futex_state in
* attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
* tsk->pi_lock held.
*
* It guarantees also that a pi_state which was queued right before
* the state change under tsk->pi_lock by a concurrent waiter must
* be observed in exit_pi_state_list().
*/
raw_spin_lock_irq(&tsk->pi_lock);
tsk->futex_state = FUTEX_STATE_EXITING;
raw_spin_unlock_irq(&tsk->pi_lock);
}
static void futex_cleanup_end(struct task_struct *tsk, int state)
{
/*
* Lockless store. The only side effect is that an observer might
* take another loop until it becomes visible.
*/
tsk->futex_state = state;
/*
* Drop the exit protection. This unblocks waiters which observed
* FUTEX_STATE_EXITING to reevaluate the state.
*/
mutex_unlock(&tsk->futex_exit_mutex);
}
void futex_exec_release(struct task_struct *tsk)
{
/*
* The state handling is done for consistency, but in the case of
* exec() there is no way to prevent futher damage as the PID stays
* the same. But for the unlikely and arguably buggy case that a
* futex is held on exec(), this provides at least as much state
* consistency protection which is possible.
*/
futex_cleanup_begin(tsk);
futex_cleanup(tsk);
/*
* Reset the state to FUTEX_STATE_OK. The task is alive and about
* exec a new binary.
*/
futex_cleanup_end(tsk, FUTEX_STATE_OK);
}
void futex_exit_release(struct task_struct *tsk)
{
futex_cleanup_begin(tsk);
futex_cleanup(tsk);
futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
}
long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
u32 __user *uaddr2, u32 val2, u32 val3)
{
@@ -3817,7 +3984,7 @@ static void __user *futex_uaddr(struct robust_list __user *entry,
*
* We silently return on any sign of list-walking problem.
*/
void compat_exit_robust_list(struct task_struct *curr)
static void compat_exit_robust_list(struct task_struct *curr)
{
struct compat_robust_list_head __user *head = curr->compat_robust_list;
struct robust_list __user *entry, *next_entry, *pending;

View File

@@ -1719,8 +1719,7 @@ void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
* possible because it belongs to the pi_state which is about to be freed
* and it is not longer visible to other tasks.
*/
void rt_mutex_proxy_unlock(struct rt_mutex *lock,
struct task_struct *proxy_owner)
void rt_mutex_proxy_unlock(struct rt_mutex *lock)
{
debug_rt_mutex_proxy_unlock(lock);
rt_mutex_set_owner(lock, NULL);

View File

@@ -133,8 +133,7 @@ enum rtmutex_chainwalk {
extern struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock);
extern void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
struct task_struct *proxy_owner);
extern void rt_mutex_proxy_unlock(struct rt_mutex *lock,
struct task_struct *proxy_owner);
extern void rt_mutex_proxy_unlock(struct rt_mutex *lock);
extern void rt_mutex_init_waiter(struct rt_mutex_waiter *waiter);
extern int __rt_mutex_start_proxy_lock(struct rt_mutex *lock,
struct rt_mutex_waiter *waiter,

View File

@@ -4393,6 +4393,8 @@ void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
if (!cpumask_test_cpu(cpu, buffer->cpumask))
return;
/* prevent another thread from changing buffer sizes */
mutex_lock(&buffer->mutex);
atomic_inc(&buffer->resize_disabled);
atomic_inc(&cpu_buffer->record_disabled);
@@ -4416,6 +4418,8 @@ void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
atomic_dec(&cpu_buffer->record_disabled);
atomic_dec(&buffer->resize_disabled);
mutex_unlock(&buffer->mutex);
}
EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);

View File

@@ -5815,10 +5815,8 @@ static int sysfs_slab_add(struct kmem_cache *s)
s->kobj.kset = kset;
err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
if (err) {
kobject_put(&s->kobj);
if (err)
goto out;
}
err = sysfs_create_group(&s->kobj, &slab_attr_group);
if (err)

View File

@@ -15,10 +15,6 @@ endef
$(call allow-override,CC,$(CROSS_COMPILE)gcc)
$(call allow-override,LD,$(CROSS_COMPILE)ld)
HOSTCC ?= gcc
HOSTLD ?= ld
HOSTAR ?= ar
export HOSTCC HOSTLD HOSTAR
ifeq ($(V),1)

View File

@@ -7,15 +7,6 @@ ARCH := x86
endif
# always use the host compiler
ifneq ($(LLVM),)
HOSTAR ?= llvm-ar
HOSTCC ?= clang
HOSTLD ?= ld.lld
else
HOSTAR ?= ar
HOSTCC ?= gcc
HOSTLD ?= ld
endif
AR = $(HOSTAR)
CC = $(HOSTCC)
LD = $(HOSTLD)

View File

@@ -148,10 +148,6 @@ endef
LD += $(EXTRA_LDFLAGS)
HOSTCC ?= gcc
HOSTLD ?= ld
HOSTAR ?= ar
PKG_CONFIG = $(CROSS_COMPILE)pkg-config
LLVM_CONFIG ?= llvm-config

View File

@@ -57,7 +57,6 @@ INSTALL_SCRIPT = ${INSTALL_PROGRAM}
CROSS = #/usr/i386-linux-uclibc/usr/bin/i386-uclibc-
CROSS_COMPILE ?= $(CROSS)
LD = $(CC)
HOSTCC = gcc
# check if compiler option is supported
cc-supports = ${shell if $(CC) ${1} -S -o /dev/null -x c /dev/null > /dev/null 2>&1; then echo "$(1)"; fi;}

View File

@@ -60,6 +60,16 @@ $(call allow-override,LD,$(CROSS_COMPILE)ld)
$(call allow-override,CXX,$(CROSS_COMPILE)g++)
$(call allow-override,STRIP,$(CROSS_COMPILE)strip)
ifneq ($(LLVM),)
HOSTAR ?= llvm-ar
HOSTCC ?= clang
HOSTLD ?= ld.lld
else
HOSTAR ?= ar
HOSTCC ?= gcc
HOSTLD ?= ld
endif
ifeq ($(CC_NO_CLANG), 1)
EXTRA_WARNINGS += -Wstrict-aliasing=3
endif